Online internal short circuit detection for a large format lithium ion battery

[1]  Hongwen He,et al.  A systematic state-of-charge estimation framework for multi-cell battery pack in electric vehicles using bias correction technique , 2016 .

[2]  Jianqiu Li,et al.  Simplification of physics-based electrochemical model for lithium ion battery on electric vehicle. Part II: Pseudo-two-dimensional model simplification and state of charge estimation , 2015 .

[3]  Xuning Feng,et al.  Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module , 2015 .

[4]  Minggao Ouyang,et al.  Characterization of large format lithium ion battery exposed to extremely high temperature , 2014 .

[5]  Tao Wang,et al.  Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies , 2014 .

[6]  Christian Fleischer,et al.  On-line adaptive battery impedance parameter and state estimation considering physical principles in reduced order equivalent circuit battery models part 2. Parameter and state estimation , 2014 .

[7]  Jinhua Sun,et al.  Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method , 2014 .

[8]  Hongwen He,et al.  Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions , 2014 .

[9]  Jianbo Zhang,et al.  Simultaneous estimation of thermal parameters for large-format laminated lithium-ion batteries , 2014 .

[10]  Huei Peng,et al.  A unified open-circuit-voltage model of lithium-ion batteries for state-of-charge estimation and state-of-health monitoring , 2014 .

[11]  Bing Xia,et al.  External short circuit fault diagnosis for lithium-ion batteries , 2014, 2014 IEEE Transportation Electrification Conference and Expo (ITEC).

[12]  Minggao Ouyang,et al.  Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry , 2014 .

[13]  P. Ramadass,et al.  Study of internal short in a Li-ion cell-II. Numerical investigation using a 3D electrochemical-thermal model , 2014 .

[14]  Joaquim R. R. A. Martins,et al.  Design of a lithium-ion battery pack for PHEV using a hybrid optimization method , 2014 .

[15]  P. Ramadass,et al.  Study of internal short in a Li-ion cell I. Test method development using infra-red imaging technique , 2014 .

[16]  Christopher J. Orendorff,et al.  Evaluation of mechanical abuse techniques in lithium ion batteries , 2014 .

[17]  Jianqiu Li,et al.  Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors , 2014, Journal of Thermal Analysis and Calorimetry.

[18]  Hongwen He,et al.  A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles , 2013 .

[19]  K. Smith,et al.  Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries , 2013 .

[20]  Minggao Ouyang,et al.  Research on simplification of simulating the heat conduction in the lithium-ion battery core , 2013, 2013 World Electric Vehicle Symposium and Exhibition (EVS27).

[21]  Michael Pecht,et al.  Lessons Learned from the 787 Dreamliner Issue on Lithium-Ion Battery Reliability , 2013 .

[22]  Yi Ding,et al.  Online Parameterization of Lumped Thermal Dynamics in Cylindrical Lithium Ion Batteries for Core Temperature Estimation and Health Monitoring , 2013, IEEE Transactions on Control Systems Technology.

[23]  Jianqiu Li,et al.  A review on the key issues for lithium-ion battery management in electric vehicles , 2013 .

[24]  Rolf Findeisen,et al.  Electrochemical Model Based Observer Design for a Lithium-Ion Battery , 2013, IEEE Transactions on Control Systems Technology.

[25]  Dirk Uwe Sauer,et al.  Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application , 2013 .

[26]  T. Wierzbicki,et al.  Modeling and short circuit detection of 18650 Li-ion cells under mechanical abuse conditions , 2012 .

[27]  D. H. Doughty,et al.  Vehicle Battery Safety Roadmap Guidance , 2012 .

[28]  Ahmad Pesaran,et al.  Fail-safe design for large capacity lithium-ion battery systems , 2012 .

[29]  Weijun Gu,et al.  Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications , 2012 .

[30]  Qingsong Wang,et al.  Thermal runaway caused fire and explosion of lithium ion battery , 2012 .

[31]  Xiangming He,et al.  Electro-thermal modeling and experimental validation for lithium ion battery , 2012 .

[32]  Xiaosong Hu,et al.  A comparative study of equivalent circuit models for Li-ion batteries , 2012 .

[33]  Ganesan Nagasubramanian,et al.  Experimental triggers for internal short circuits in lithium-ion cells , 2011 .

[34]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[35]  Yi-Hsien Chiang,et al.  Online estimation of internal resistance and open-circuit voltage of lithium-ion batteries in electr , 2011 .

[36]  N A Chaturvedi,et al.  Modeling, estimation, and control challenges for lithium-ion batteries , 2010, Proceedings of the 2010 American Control Conference.

[37]  Jasim Ahmed,et al.  Algorithms for Advanced Battery-Management Systems , 2010, IEEE Control Systems.

[38]  Weifeng Fang,et al.  Electrochemical–thermal modeling of automotive Li‐ion batteries and experimental validation using a three‐electrode cell , 2010 .

[39]  P. Ramadass,et al.  Analysis of internal short-circuit in a lithium ion cell , 2009 .

[40]  H. Maleki,et al.  Internal short circuit in Li-ion cells , 2009 .

[41]  Gi‐Heon Kim,et al.  A three-dimensional thermal abuse model for lithium-ion cells , 2007 .

[42]  Chaoyang Wang,et al.  Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles , 2006 .

[43]  C. Wan,et al.  Thermal Analysis of Spirally Wound Lithium Batteries , 2006 .

[44]  B. Liaw,et al.  Modeling of lithium ion cells: A simple equivalent-circuit model approach , 2004 .

[45]  Gregory L. Plett,et al.  Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 3. State and parameter estimation , 2004 .

[46]  James W. Evans,et al.  Electrochemical‐Thermal Model of Lithium Polymer Batteries , 2000 .

[47]  J. Newman,et al.  Heat‐Generation Rate and General Energy Balance for Insertion Battery Systems , 1997 .

[48]  J. Tarascon,et al.  Comparison of Modeling Predictions with Experimental Data from Plastic Lithium Ion Cells , 1996 .

[49]  James W. Evans,et al.  Heat Transfer Phenomena in Lithium/Polymer‐Electrolyte Batteries for Electric Vehicle Application , 1993 .

[50]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[51]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[52]  Wei Zhao,et al.  Modeling Nail Penetration Process in Large-Format Li-Ion Cells , 2015 .

[53]  Wei He,et al.  State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures , 2014 .

[54]  Rui Xiong,et al.  A data-driven based adaptive state of charge estimator of lithium-ion polymer battery used in electric vehicles , 2014 .

[55]  J. Christensen,et al.  An Efficient Parallelizable 3D Thermoelectrochemical Model of a Li-Ion Cell , 2013 .

[56]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .

[57]  Aniruddha Datta,et al.  On-Line Parameter Estimation , 1998 .

[58]  M. Doyle,et al.  Simulation and Optimization of the Dual Lithium Ion Insertion Cell , 1994 .