Independent Sets of Maximum Weight in Apple-Free Graphs

We present the first polynomial-time algorithm to solve the maximum weight independent set problem for apple-free graphs, which is a common generalization of several important classes where the problem can be solved efficiently, such as claw-free graphs, chordal graphs, and cographs. Our solution is based on a combination of two algorithmic techniques (modular decomposition and decomposition by clique separators) and a deep combinatorial analysis of the structure of apple-free graphs. Our algorithm is robust in the sense that it does not require the input graph $G$ to be apple-free; the algorithm either finds an independent set of maximum weight in $G$ or reports that $G$ is not apple-free.

[1]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[2]  Derek G. Corneil,et al.  Complement reducible graphs , 1981, Discret. Appl. Math..

[3]  Robert E. Tarjan,et al.  Decomposition by clique separators , 1985, Discret. Math..

[4]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[5]  Fanica Gavril,et al.  Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..

[6]  Zdenek Ryjácek,et al.  Claw-free graphs - A survey , 1997, Discret. Math..

[7]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[8]  Vadim V. Lozin,et al.  Stability in P5- and banner-free graphs , 2000, Eur. J. Oper. Res..

[9]  Najiba Sbihi,et al.  Algorithme de recherche d'un stable de cardinalite maximum dans un graphe sans etoile , 1980, Discret. Math..

[10]  Paul D. Seymour,et al.  The roots of the independence polynomial of a clawfree graph , 2007, J. Comb. Theory B.

[11]  Paul D. Seymour,et al.  Claw-free graphs. II. Non-orientable prismatic graphs , 2008, J. Comb. Theory, Ser. B.

[12]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[13]  Vadim V. Lozin,et al.  On Independent Vertex Sets in Subclasses of Apple-Free Graphs , 2010, Algorithmica.

[14]  Paul D. Seymour,et al.  Claw-free graphs. V. Global structure , 2008, J. Comb. Theory, Ser. B.

[15]  Martin Milanič,et al.  A polynomial algorithm to find an independent set of maximum weight in a fork-free graph , 2006, SODA '06.

[16]  Paul D. Seymour,et al.  Claw-free graphs. I. Orientable prismatic graphs , 2007, J. Comb. Theory, Ser. B.

[17]  Vadim V. Lozin,et al.  Independent Sets of Maximum Weight in Apple-Free Graphs , 2008, ISAAC.

[18]  Andreas Brandstädt,et al.  New applications of clique separator decomposition for the Maximum Weight Stable Set problem , 2005, Theor. Comput. Sci..

[19]  George J. Minty,et al.  On maximal independent sets of vertices in claw-free graphs , 1980, J. Comb. Theory B.

[20]  C Berge,et al.  TWO THEOREMS IN GRAPH THEORY. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Vadim V. Lozin,et al.  Robust Algorithms for the Stable Set Problem , 2003, Graphs Comb..

[22]  Paul D. Seymour,et al.  Claw-free graphs. III. Circular interval graphs , 2008, J. Comb. Theory, Ser. B.

[23]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[24]  Jeremy P. Spinrad,et al.  Efficient graph representations , 2003, Fields Institute monographs.

[25]  S. Whitesides A Method for Solving Certain Graph Recognition and Optimization Problems, with Applications to Perfect Graphs , 1982 .

[26]  Paul D. Seymour,et al.  Claw-free graphs. IV. Decomposition theorem , 2008, J. Comb. Theory, Ser. B.

[27]  Paul D. Seymour,et al.  Claw-free graphs. VII. Quasi-line graphs , 2012, J. Comb. Theory, Ser. B.

[28]  V. Lozin,et al.  A polynomial algorithm to find an independent set of maximum weight in a fork-free graph , 2006, SODA 2006.

[29]  Stephan Olariu,et al.  The Strong Perfect Graph Conjecture for pan-free graphs , 1989, J. Comb. Theory B.

[30]  A. Tamura,et al.  A revision of Minty's algorithm for finding a maximum weight stable set of a claw-free graph , 2001 .

[31]  Andreas Brandstädt,et al.  On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem , 2005, Theor. Comput. Sci..

[32]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[33]  C. De Simone,et al.  On the vertex packing problem , 1993, Graphs Comb..