Topological color codes and two-body quantum lattice Hamiltonians

Topological color codes are among the stabilizer codes with remarkable properties from the quantum information perspective. In this paper, we construct a lattice, the so-called ruby lattice, with coordination number 4 governed by a two-body Hamiltonian. In a particular regime of coupling constants, in a strong coupling limit, degenerate perturbation theory implies that the low-energy spectrum of the model can be described by a many-body effective Hamiltonian, which encodes the color code as its ground state subspace. Ground state subspace corresponds to a vortex-free sector. The gauge symmetry Z2×Z2 of the color code could already be realized by identifying three distinct plaquette operators on the ruby lattice. All plaquette operators commute with each other and with the Hamiltonian being integrals of motion. Plaquettes are extended to closed strings or string-net structures. Non-contractible closed strings winding the space commute with Hamiltonian but not always with each other. This gives rise to exact topological degeneracy of the model. A connection to 2-colexes can be established via the coloring of the strings. We discuss it at the non-perturbative level. The particular structure of the two-body Hamiltonian provides a fruitful interpretation in terms of mapping onto bosons coupled to effective spins. We show that high-energy excitations of the model have fermionic statistics. They form three families of high-energy excitations each of one color. Furthermore, we show that they belong to a particular family of topological charges. The emergence of invisible charges is related to the string-net structure of the model. The emerging fermions are coupled to nontrivial gauge fields. We show that for particular 2-colexes, the fermions can see the background fluxes in the ground state. Also, we use the Jordan–Wigner transformation in order to test the integrability of the model via introducing Majorana fermions. The four-valent structure of the lattice prevents the fermionized Hamiltonian from being reduced to a quadratic form owing to interacting gauge fields. We also propose another construction for the two-body Hamiltonian based on the connection between color codes and cluster states. The corresponding two-body Hamiltonian encodes a cluster state defined on a bipartite lattice as its low-energy spectrum, and subsequent selective measurements give rise to the color code model. We discuss this latter approach along with the construction based on the ruby lattice.

[1]  R. Raussendorf,et al.  Measurement-based quantum computation with the toric code states , 2006, quant-ph/0610162.

[2]  M. A. Martin-Delgado,et al.  Family of non-Abelian Kitaev models on a lattice: Topological condensation and confinement , 2007, 0712.0190.

[3]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[4]  M. A. Martin-Delgado,et al.  Interferometry-free protocol for demonstrating topological order , 2008 .

[5]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[6]  M. Ohzeki Threshold of topological color code , 2009 .

[7]  M. Kargarian Finite temperature topological order in 2D topological color codes , 2009, 0904.4492.

[8]  D. Suter,et al.  Experimental observation of a topological phase in the maximally entangled state of a pair of qubits , 2007, 0705.3566.

[9]  Clarice Dias de Albuquerque,et al.  Topological quantum codes on compact surfaces with genus g≥2 , 2009 .

[10]  H. Briegel,et al.  Entanglement purification and quantum error correction , 2007, 0705.4165.

[11]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[12]  H. Briegel,et al.  Quantum algorithms for spin models and simulable gate sets for quantum computation , 2008, 0805.1214.

[13]  Tao Xiang,et al.  Topologically distinct classes of valence-bond solid states with their parent Hamiltonians , 2009, 0904.0550.

[14]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[15]  Austin G. Fowler,et al.  Experimental demonstration of topological error correction , 2009, Nature.

[16]  J. Myrheim,et al.  On the theory of identical particles , 1977 .

[17]  Helmut G Katzgraber,et al.  Error threshold for color codes and random three-body Ising models. , 2009, Physical review letters.

[18]  Qing Chen,et al.  Graphical Nonbinary Quantum Error-Correcting Codes , 2008 .

[19]  M. A. Martin-Delgado,et al.  Statistical mechanical models and topological color codes , 2007, 0711.0468.

[20]  M. Lewenstein,et al.  Quantum phases of cold polar molecules in 2D optical lattices. , 2009, Physical review letters.

[21]  L. Georgiev Towards a universal set of topologically protected gates for quantum computation with Pfaffian qubits , 2006, hep-th/0611340.

[22]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[23]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[24]  L. Georgiev Computational equivalence of the two inequivalent spinor representations of the braid group in the Ising topological quantum computer , 2008, 0812.2337.

[25]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[26]  Flux phase of the half-filled band. , 1994, Physical review letters.

[27]  W. Marsden I and J , 2012 .

[28]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[29]  W. Dur,et al.  Classical spin systems and the quantum stabilizer formalism: General mappings and applications , 2008, 0812.2127.

[30]  H. Briegel,et al.  Unifying all classical spin models in a lattice gauge theory. , 2008, Physical review letters.

[31]  Franz Wegner Flow‐equations for Hamiltonians , 1994 .

[32]  J J García-Ripoll,et al.  Implementation of spin Hamiltonians in optical lattices. , 2004, Physical review letters.

[33]  M. Lukin,et al.  Controlling spin exchange interactions of ultracold atoms in optical lattices. , 2002, Physical review letters.

[34]  Matthias Troyer,et al.  Engineering exotic phases for topologically protected quantum computation by emulating quantum dimer models , 2007, 0708.0191.

[35]  Degenerate perturbation theory of quantum fluctuations in a pyrochlore antiferromagnet , 2006, cond-mat/0607210.

[36]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[37]  H. Briegel,et al.  2D multipartite valence bond states in quantum anti-ferromagnets , 2007, 0710.2349.

[38]  Trapped Rydberg Ions: From Spin Chains to Fast , 2007, 0709.2849.

[39]  Stephen S. Bullock,et al.  Qudit surface codes and gauge theory with finite cyclic groups , 2007 .

[40]  D. Perez-Garcia,et al.  Thermal states of anyonic systems , 2008, 0812.4975.

[41]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2006 .

[42]  Gregory W. Moore,et al.  Nonabelions in the fractional quantum Hall effect , 1991 .

[43]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[44]  J. Cirac,et al.  Simulations of quantum double models , 2009, 0901.1345.

[45]  L. Georgiev Computational equivalence of the two inequivalent spinor representations of the braid group in the topological quantum computer based on Ising anyons , 2008 .

[46]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.

[47]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[48]  J. Vala,et al.  Topological degeneracy and vortex manipulation in Kitaev's honeycomb model. , 2008, Physical review letters.

[49]  P. Zoller,et al.  Anyonic interferometry and protected memories in atomic spin lattices , 2007, 0711.1365.

[50]  H. Briegel,et al.  Graph states as ground states of many-body spin-1/2 Hamiltonians , 2006, quant-ph/0612186.

[51]  H. Bombin,et al.  Exact topological quantum order in D=3 and beyond : Branyons and brane-net condensates , 2006, cond-mat/0607736.

[52]  Gottesman Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[53]  W Dür,et al.  Classical spin models and the quantum-stabilizer formalism. , 2007, Physical review letters.

[54]  Christian Knetter,et al.  Perturbation theory by flow equations: dimerized and frustrated S = 1/2 chain , 2000 .

[55]  M. Fannes,et al.  A statistical mechanics view on Kitaev's proposal for quantum memories , 2007, quant-ph/0702102.

[56]  S. Iblisdir,et al.  Scaling law for topologically ordered systems at finite temperature , 2008, 0806.1853.

[57]  M. Kargarian,et al.  Entanglement properties of topological color codes , 2008, 0809.4276.

[58]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[59]  Hans-J. Briegel,et al.  Computational model underlying the one-way quantum computer , 2002, Quantum Inf. Comput..

[60]  Masayuki Ohzeki Accuracy thresholds of topological color codes on the hexagonal and square-octagonal lattices. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation , 2006, quant-ph/0609002.

[62]  T. Xiang,et al.  Topological characterization of quantum phase transitions in a spin-1/2 model. , 2006, Physical Review Letters.

[63]  H. Bombin,et al.  Nested topological order , 2008, 0803.4299.

[64]  W Dür,et al.  Completeness of the classical 2D Ising model and universal quantum computation. , 2007, Physical review letters.

[65]  F. Wegner FLOW EQUATIONS FOR HAMILTONIANS , 2001 .

[66]  S. Mandal,et al.  Exactly solvable Kitaev model in three dimensions , 2007, 0801.0229.

[67]  M. Planat,et al.  Unitary reflection groups for quantum fault tolerance , 2008, 0807.3650.

[68]  H. Briegel,et al.  Persistent entanglement in arrays of interacting particles. , 2000, Physical review letters.

[69]  Xiao-Gang Wen,et al.  Fermions, strings, and gauge fields in lattice spin models , 2003 .

[70]  A. Stephens,et al.  Optimal decoding in fault-tolerant concatenated quantum error correction , 2009 .

[71]  David P. DiVincenzo,et al.  Fault-tolerant architectures for superconducting qubits , 2009, 0905.4839.

[72]  H. Bombin,et al.  Topological computation without braiding. , 2007, Physical review letters.

[73]  C. P. Sun,et al.  Mosaic spin models with topological order , 2007, 0708.0676.

[74]  X. Wen Quantum Field Theory of Many-body Systems: From the Origin of Sound to an Origin of Light and Electrons , 2004 .

[75]  Miguel-Angel Martin-Delgado,et al.  Topological Quantum Error Correction with Optimal Encoding Rate , 2006, ArXiv.

[76]  F. Bais,et al.  Condensate-induced transitions between topologically ordered phases , 2008, 0808.0627.

[77]  Robert D. Carr,et al.  Brief announcement: the impact of classical electronics constraints on a solid-state logical qubit memory , 2009, SPAA '09.

[78]  Wolfgang Dur,et al.  Completeness of classical spin models and universal quantum computation , 2008, 0812.2368.

[79]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[80]  A. M. Stephens,et al.  Accuracy threshold for concatenated error detection in one dimension , 2009, 0902.2658.

[81]  R. Rivers Fermions , 2020, Essential Statistical Physics.

[82]  Xiao-Gang Wen,et al.  Topological orders and edge excitations in fractional quantum hall states , 1995, cond-mat/9506066.

[83]  S. Dusuel,et al.  Perturbative approach to an exactly solved problem: Kitaev honeycomb model , 2008, 0809.1553.

[84]  Ari Pakman,et al.  Topological entanglement entropy and holography , 2008, 0805.1891.

[85]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[86]  V. Karimipour Complete characterization of the spectrum of the Kitaev model on spin ladders , 2009, 0904.3554.

[87]  Z. W. E. Evans,et al.  Optimal correction of concatenated fault-tolerant quantum codes , 2012, Quantum Inf. Process..

[88]  Frank Wilczek,et al.  Quantum Mechanics of Fractional-Spin Particles , 1982 .

[89]  Yue Yu,et al.  Anyonic loops in three-dimensional spin liquid and chiral spin liquid , 2007, 0712.4231.

[90]  Michael J. Hartmann,et al.  Strongly interacting polaritons in coupled arrays of cavities , 2006, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[91]  H. Bombin,et al.  Homological error correction: Classical and quantum codes , 2006, quant-ph/0605094.

[92]  M. Fannes,et al.  On thermalization in Kitaev's 2D model , 2008, 0810.4584.

[93]  Hector Bombin,et al.  Optimal resources for topological two-dimensional stabilizer codes : Comparative study , 2007 .

[94]  Michal Horodecki,et al.  On Thermal Stability of Topological Qubit in Kitaev's 4D Model , 2008, Open Syst. Inf. Dyn..

[95]  Hong Yao,et al.  Exact chiral spin liquid with non-Abelian anyons. , 2007, Physical review letters.