Ceramic Filament Fibers – A Review

Newmaterialsandprocessingroutesprovideopportunitiesfortheproductionofadvancedhighperformancestructuresfor different applications. Ceramic matrix composites(CMCs)areoneofthesepromisingmaterials.Bycombiningdifferent ceramic matrix materials with special suitablefibers, new properties can be created and tailored forinteresting technical fields. The demand for lightweight,high modulus, and high-temperature-resistant materialsforaerospaceandotherhightemperatureapplicationsgaverise to the development of CMCs. These materials exhibitmost of the positive properties of monolithic ceramics,however, are less brittle. The further optimization of thesematerials is closely connected to the development of highperformance ceramic fibers, which should be producedby cost-efficient processes.

[1]  A. Nakahira,et al.  Synthesis and properties of ceramic fibers from polycarbosilane/polymethylphenylsiloxane polymer blends , 2010 .

[2]  Litong Zhang,et al.  Processing of Silicon Carbide Fibers from Polycarbosilane with Polypropylene as the Additive , 2010 .

[3]  J. J. Sha,et al.  Microstructure and mechanical properties of Hi-Nicalon™ Type S fibers annealed and crept in various oxygen partial pressures , 2009 .

[4]  Yujun Zhang,et al.  Preparation, microstructure and properties of yttrium aluminum garnet fibers prepared by sol-gel method , 2009 .

[5]  R. Bordia,et al.  Processing, structure and properties of ceramic fibers , 2009 .

[6]  A. Bunsell The mechanical behaviour of small diameter silicon carbide fibres , 2009 .

[7]  J. J. Sha,et al.  Thermal and mechanical stabilities of Hi-Nicalon SiC fiber under annealing and creep in various oxygen partial pressures , 2008 .

[8]  Litong Zhang,et al.  Mechanical and microstructural evolution of Hi-Nicalon Trade Mark SiC fibers annealed in O2–H2O–Ar atmospheres , 2008 .

[9]  H. Ichikawa,et al.  Properties of Stoichiometric Silicon Carbide Fiber Derived from Polycarbosilane , 2008 .

[10]  T. Seguchi,et al.  Properties of the Low Oxygen Content SiC Fiber on High Temperature Heat Treatment , 2008 .

[11]  K. Jakus,et al.  Mechanical behavior of a Sumitomo alumina fiber at room and high temperature , 2008 .

[12]  T. Seguchi,et al.  Thermomechanical Analysis of the Low Oxygen Silicon Carbide Fibers Derived from Polycarbosilane , 2008 .

[13]  H. Ichikawa,et al.  Thermal stability of the low oxygen silicon carbide fibers derived from polycarbosilane , 2008 .

[14]  A. Yokoyama,et al.  Recent Progress of Hi‐Nicalon Type S Development , 2008 .

[15]  A. Saeki,et al.  High Performance Silicon Carbide Fiber Hi‐Nicalon for Ceramic Matrix Composites , 2008 .

[16]  T. Yamamura,et al.  Thermal Stability and Chemical Corrosion Resistance of Newly Developed Continuous Si‐Zr‐C‐O Tyranno Fiber , 2008 .

[17]  Y. Kohtoku,et al.  New Type of SIC‐Sintered Fiber and its Composite Material , 2008 .

[18]  Youren Xu,et al.  Structure and Properties of Sylramic™ Silicon Carbide Fiber—A Polycrystalline, Stoichiometric β‐Sic Composition , 2008 .

[19]  L. Sneddon,et al.  Polymeric Precursors for Bn and SiNCB Ceramic Fibers , 2007 .

[20]  M. Weinmann High Temperature Stable Ceramics from Inorganic Polymers , 2007 .

[21]  H. Martin,et al.  Silicon carbide fibers from highly reactive poly(methylchlorosilane)s , 2007 .

[22]  A. Kohyama,et al.  Tensile behavior and microstructural characterization of SiC fibers under loading , 2007 .

[23]  C. Sauder,et al.  Tensile Creep Behavior of SiC-Based Fibers With a Low Oxygen Content , 2007 .

[24]  B. Clauss,et al.  Modern Aspects of Ceramic Fiber Development , 2006 .

[25]  宏伸 市川 電子線照射不融化によるポリカルボシランからの高性能 SiC 繊維の開発 (総説) , 2006 .

[26]  A. Bunsell,et al.  A review of the development of three generations of small diameter silicon carbide fibres , 2006 .

[27]  Seth T. Taylor,et al.  Kinetics of Thermal, Passive Oxidation of Nicalon Fibers , 2005 .

[28]  T. Seguchi,et al.  Effect of Firing Temperature on the Thermal Stability of Low‐Oxygen Silicon Carbide Fibers , 2005 .

[29]  K. Kakimoto,et al.  Oxidation‐Induced Microstructural Change of Si‐Ti‐C‐O Fibers , 2005 .

[30]  M. Weinmann,et al.  Preparation of high-temperature stable Si-B-C-N fibers from tailored single source polyborosilazanes , 2005 .

[31]  D. Sporn,et al.  A new type of precursor for fibers in the system Si–C , 2005 .

[32]  James A. DiCarlo,et al.  Non-oxide (Silicon Carbide) Fibers , 2005 .

[33]  R. Riedel From molecules to materials — a novel route for the synthesis of advanced ceramics , 2005, Naturwissenschaften.

[34]  T. Seguchi,et al.  Thermal stability of low-SiC fiber (Hi-nicalon) treated in a hot isostatic press , 2004 .

[35]  J. Sakamoto,et al.  Microstructure and Oxidation Behavior of Silicon Carbide Fibers Derived from Polycarbosilane , 2004 .

[36]  A. Saeki,et al.  Effect of Hydrogen Atmosphere on Pyrolysis of Cured Polycarbosilane Fibers , 2004 .

[37]  T. Parthasarathy,et al.  Characterization of Oxidized Polymer‐Derived SiBCN Fibers , 2004 .

[38]  K. Okamura,et al.  Thermal stability of low-oxygen silicon carbide fibers (Hi-Nicalon) in carbon monoxide , 2003 .

[39]  Y. Morisada,et al.  Oxidation behavior of Si-M-C-O fibers under wide range of oxygen partial pressures , 2002 .

[40]  A. Bunsell,et al.  Microstructural evolution under load and high temperature deformation mechanisms of a mullite/alumina fibre , 2002 .

[41]  D. Wilson,et al.  High performance oxide fibers for metal and ceramic composites , 2001 .

[42]  J. Subrahmanyam,et al.  SiC fibre by chemical vapour deposition on tungsten filament , 2001 .

[43]  D. Jeulin,et al.  Microstructural stability and room temperature mechanical properties of the Nextel 720 fibre , 2001 .

[44]  Masahiro Ito,et al.  Effect of Vacuum Heat Treatment on Electron‐Beam‐Irradiation‐Cured Polycarbosilane Fibers , 2001 .

[45]  A. Bunsell,et al.  Fine diameter ceramic fibres , 2000 .

[46]  K. Okamura,et al.  Thermal Stability of Low-Oxygen Silicon Carbide Fiber (Hi-Nicalon) Subjected to Selected Oxidation Treatment , 2000 .

[47]  H. Ichikawa,et al.  Silicon Carbide Fibers (Organometallic Pyrolysis) , 2000 .

[48]  K. Nickel,et al.  Oxidation Behavior of Precursor Dervied Ceramics in the System Si-(B)-C-N , 1999 .

[49]  F. Aldinger,et al.  Compression creep behaviour of precursor-derived SiCN Ceramics , 1999 .

[50]  M. Monthioux,et al.  Thermodynamic Approach to the Oxidation of Hi-Nicalon Fiber , 1999 .

[51]  T. Seguchi,et al.  Use of Blended Precursors of Poly(vinylsilane) in Polycarbosilane for Silicon Carbide Fiber Synthesis with Radiation Curing , 1999 .

[52]  T. Seguchi,et al.  SiC-Based Fibers Synthesized from Hybrid Polymer of Polycarbosilane and Polyvinylsilane , 1998 .

[53]  H. Ishikawa,et al.  New Type of Sintered SiC Fiber and Its Composite Material , 1998 .

[54]  K. Nickel,et al.  Oxidation Behaviour of Precursor Derived Si-(B)-C-N-Ceramics , 1998 .

[55]  T. Yamamura,et al.  High-strength alkali-resistant sintered SiC fibre stable to 2,200 °C , 1998, Nature.

[56]  L. Sneddon,et al.  Amine-Modified Polyborazylenes: Second-Generation Precursors to Boron Nitride , 1998 .

[57]  R. Pailler,et al.  Continuous SiC-based model monofilaments with a low free carbon content: Part I: From the pyrolysis of a polycarbosilane precursor under an atmosphere of hydrogen , 1997 .

[58]  R. Pailler,et al.  Continuous SiC-based model monofilaments with a low free carbon content: Part II From the pyrolysis of a novel copolymer precursor , 1997 .

[59]  R. Pailler,et al.  Correlation between microstructure and mechanical behaviour at high temperatures of a SiC fibre with a low oxygen content (Hi–Nicalon) , 1997 .

[60]  M. Jansen,et al.  Moderne Hochleistungskeramiken – amorphe anorganische Netzwerke aus molekularen Vorläufern , 1997 .

[61]  R. Pailler,et al.  A model SiC-based fibre with a low oxygen content prepared from a polycarbosilane precursor , 1997 .

[62]  A. Bunsell,et al.  Microstructural evolution of the latest generation of small‐diameter SiC‐based fibres tested at high temperatures , 1997 .

[63]  L. Lipowitz Structure and properties of SYLRAMIC^ silicon carbide fiber─a polycarbosilane, stoichiometric β-SiC composition , 1997 .

[64]  M. Monthioux,et al.  Thermal stability of a PCS-derived SiC fibre with a low oxygen content (Hi-Nicalon) , 1997 .

[65]  Dong-Won Park,et al.  Chemical vapour deposition of silicon carbide by pyrolysis of methylchlorosilanes , 1997 .

[66]  R. Pailler,et al.  Synthesis and characterization of new precursors to nearly stoichiometric SiC ceramics: Part 1 The copolymer route , 1997 .

[67]  F. Aldinger,et al.  A silicoboron carbonitride ceramic stable to 2,000°C , 1996, Nature.

[68]  H. Ichikawa,et al.  Oxygen-free ceramic fibers from organosilicon precursors and E-beam curing , 1995 .

[69]  M. Narisawa,et al.  Synthesis of Silicon Carbide Fiber from Blended Precursor of Organosilicon Polymers , 1995 .

[70]  F. Aldinger,et al.  Precursor‐derived Covalent Ceramics* , 1995 .

[71]  J. Pillot,et al.  Comprehensive Chemistry of Polycarbosilanes, Polysilazanes, and Polycarbosilazanes as Precursors of Ceramics , 1995 .

[72]  A. Bunsell,et al.  Microstructure and thermo‐mechanical stability of a low‐oxygen Nicalon fibre , 1995 .

[73]  C. Vahlas,et al.  Thermal degradation mechanisms of Nicalon fibre:a thermodynamic simulation , 1994, Journal of Materials Science.

[74]  B. Clauss Preparation and characterization of spinning dopes for dry spinning of continuous alumina green fibers , 1994 .

[75]  M. G. Bader Handbook of composite reinforcements , 1994 .

[76]  Y. Hasegawa New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fibre , 1994 .

[77]  M. Jansen,et al.  New Materials in the System Si-(N,C)-B and Their Characterization , 1993 .

[78]  A. Kienzle,et al.  Hydroboration of polymethylvinylsilane — a novel route to silicon boron carbide ceramics , 1993, Journal of Materials Science.

[79]  A. Perrotta,et al.  Methylhydridopolysilazane and its pyrolytic conversion to Si3N4/SiC ceramics , 1993 .

[80]  A. Oberlin,et al.  Understanding Nicalon® fibre , 1993 .

[81]  G. Sorarù,et al.  Sol-gel derived SiO2-ZrO2 nanocomposite fibers: Influence of composition, thermal treatment and microstructure on tensile strength , 1993 .

[82]  T. Yogo,et al.  Synthesis of polycrystalline alumina-zirconia fibre using chelated aluminium-zirconium precursor , 1993 .

[83]  Y. Abe,et al.  Studies on the syntheses of polymetalloxanes and their properties as a precursor for amorphous oxide. VII. Preparation and properties of polyzirconoxanes as a precursor for zirconia fibers by the hydrolysis of bis (ethyl acetoacetato) zirconium dialkoxide , 1992 .

[84]  Chikao Kanaoka,et al.  Solid Reaction in the MgO Excess Region of the System MgO-TiO2-Al2O3 , 1992 .

[85]  Y. Hasegawa Si-C fiber prepared from polycarbosilane cured without oxygen , 1992 .

[86]  M. Jansen,et al.  Synthesis of Advanced Ceramics in the Systems Si-B-N and Si-B-N-C Employing Novel Precursor Compounds , 1992 .

[87]  D. Ganguli,et al.  Preparation of ZrO2CaO and ZrO2MgO fibres by alkoxide Sol-Gel processing , 1992 .

[88]  P. Mutin,et al.  Polyvinylsilazane: A Novel Precursor to Siliconcarbonitride , 1992 .

[89]  T. Cooke Inorganic Fibers—A Literature Review , 1991 .

[90]  A. Vioux,et al.  Pyrolysis of polyvinylsilazane precursors to silicon carbonitride , 1991 .

[91]  H. Yamane,et al.  Alumina fibers from poly [((3-ethoxypropanoyl)oxy)aloxane] , 1990 .

[92]  M. Peuckert,et al.  Ceramics from organometallic polymers , 1990 .

[93]  B. Padhi,et al.  Production of alumina fibre through jute fibre substrate , 1990 .

[94]  K. Jones,et al.  Preparation of cordierite fibre by a sol-gel route , 1989 .

[95]  Y. Hasegawa Synthesis of continuous silicon carbide fibre , 1989 .

[96]  J. L. Miquel,et al.  Study of Nicalon-based ceramic fibres and powders by EXAFS spectrometry, X-ray diffractometry and some additional methods , 1989 .

[97]  A. Wegerhoff,et al.  Silica-Garn ― eine neue Faser für Verbundwerkstoffe , 1989 .

[98]  L. Porte,et al.  Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide fibre , 1989 .

[99]  H. Yamane,et al.  Novel melt-processable poly[(acyloxy)aloxane] as alumina precursor , 1989 .

[100]  A. Heuer,et al.  Microstructural and Microchemical Characterization of Silicon Carbide and Silicon Carbonitride Ceramic Fibers Produced from Polymer Precursors , 1988 .

[101]  T. Yamamura,et al.  Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor , 1988 .

[102]  S. Kawanishi,et al.  A study on the electron irradiation curing mechanism of polycarbosilane fibres by solid-state29Si high-resolution nuclear magnetic resonance spectroscopy , 1988 .

[103]  Y. Abe,et al.  Preparation of SiO2-Al2O3 and SiO2-ZrO2 Fibers from Polyaluminosiloxanes and Polyzirconosiloxanes , 1988 .

[104]  Y. Kimura,et al.  Synthesis of poly[(acyloxy)aloxane] with carboxyl ligand and its utilization for the processing of alumina fiber , 1987 .

[105]  K. Okamura Ceramic fibres from polymer precursors , 1987 .

[106]  Y. Hasegawa,et al.  Synthesis of continuous silicon carbide fibre , 1986 .

[107]  K. Luthra Thermochemical Analysis of the Stability of Continuous “SiC” Fibers , 1986 .

[108]  R. West The polysilane high polymers , 1986 .

[109]  Y. Kimura,et al.  Poly(acyloxyaloxane) as organometallic precursor for alumina, 2. Synthesis of poly(propionyloxyaloxane) from an alkoxy-aluminium compound† , 1985 .

[110]  G. Simon,et al.  Mechanical and structural characterization of the Nicalon silicon carbide fibre , 1984 .

[111]  G. Simon,et al.  Creep behaviour and structural characterization at high temperatures of Nicalon SiC fibres , 1984 .

[112]  H. A. Lipsitt,et al.  Thermal stability of SiC fibres (Nicalon®) , 1984 .

[113]  Y. Hasegawa,et al.  Synthesis of continuous silicon carbide fibre , 1983 .

[114]  B. Penn,et al.  Preparation of silicon carbide–silicon nitride fibers by the controlled pyrolysis of polycarbosilazane precursors , 1982 .

[115]  S. Sakka,et al.  The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films , 1982 .

[116]  Y. Hasegawa,et al.  Synthesis of a polytitanocarbosilane and its conversion into inorganic compounds , 1981 .

[117]  E. Fitzer,et al.  Anorganische Fasern. Herstellung, Eigenschaften und Verwendung , 1980 .

[118]  S. Sakka,et al.  Preparation of glass fibres of the ZrO2-SiO2 and Na2O-ZrO2-SiO2 systems from metal alkoxides and their resistance to alkaline solution , 1980 .

[119]  T. Shishido,et al.  Anomalous characteristics of the microcrystalline state of SiC fibres , 1979, Nature.

[120]  S. Yajima,et al.  Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus , 1978 .

[121]  M. Heym,et al.  Verstärkungsfasern für Verbundwerkstoffe , 1976 .

[122]  M. Omori,et al.  SIMPLE SYNTHESIS OF THE CONTINUOUS SiC FIBER WITH HIGH TENSILE STRENGTH , 1976 .

[123]  M. Omori,et al.  CONTINUOUS SILICON CARBIDE FIBER OF HIGH TENSILE STRENGTH , 1975 .

[124]  R. Takserman-Krozer,et al.  Mechanism of breakage of liquid threads , 1964 .

[125]  W. PradosJ システム エンジニャリング プロセス工業における現状 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 1962 .