The Output Least Squares Identifiability of the Diffusion Coefficient from an H 1 –Observation in a 2–D Elliptic Equation

Output least squares stability for the diusion coecient in an elliptic equation in dimen- sion two is analyzed. This guarantees Lipschitz stability of the solution of the least squares formulation with respect to perturbations in the data independently of their attainability. The analysis shows the influence of the flow direction on the parameter to be estimated. A scale analysis for multi-scale resolution of the unknown parameter is provided. Mathematics Subject Classication. 62G05, 35R30, 93E24.

[1]  G. Richter An Inverse Problem for the Steady State Diffusion Equation , 1981 .

[2]  G. M. Troianiello,et al.  Elliptic Differential Equations and Obstacle Problems , 1987 .

[3]  Guy Chavent Quasi-convex sets and size × curvature condition, application to nonlinear inversion , 1991 .

[4]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[5]  G. Alessandrini,et al.  Elliptic equations in divergence form, geometric critical points of solutions, and Stekloff eigenfunctions , 1994 .

[6]  Trond Mannseth,et al.  Nonlinearity, Scale, and Sensitivity for Parameter Estimation Problems , 1999, SIAM J. Sci. Comput..

[7]  Karl Kunisch,et al.  State-Space Regularization: Geometric Theory , 1998 .

[8]  William Rundell,et al.  Inverse Problems in Partial Differential Equations , 1990 .

[9]  K. Kunisch,et al.  A geometric theory forL2-stability of the inverse problem in a one-dimensional elliptic equation from anH1-observation , 1993 .

[10]  Karl Kunisch,et al.  On Weakly Nonlinear Inverse Problems , 1996, SIAM J. Appl. Math..

[11]  K. Kunisch,et al.  On the Injectivity and Linearization of the Coefficient-to-Solution Mapping for Elliptic Boundary Value Problems , 1994 .

[12]  Guy Chavent New size×curvature conditions for strict quasiconvexity of sets , 1991 .

[13]  C. Chavent,et al.  Multiscale Parametrization for the Estimation of a Diffusion Coefficient in Elliptic and Parabolic Problems , 1989 .

[14]  Jun Liu A Multiresolution Method for Distributed Parameter Estimation , 1993, SIAM J. Sci. Comput..

[15]  G. Chavent Identification of Distributed Parameter Systems: About the Output Least Square Method, its Implementation, and Identifiability , 1979 .

[16]  Trond Mannseth,et al.  Assessing the validity of a linearized accuracy measure for a nonlinear parameter estimation problem , 2001 .

[17]  C. Chicone,et al.  A note on the identifiability of distributed parameters in Elliptic equations , 1987 .