Aerospace applications of shape memory alloys

Abstract With the increased emphasis on both reliability and multi-functionality in the aerospace industry, active materials are fast becoming an enabling technology capturing the attention of an increasing number of engineers and scientists worldwide. This article reviews the class of active materials known as shape memory alloys (SMAs), especially as used in aerospace applications. To begin, a general overview of SMAs is provided. Their useful properties and engineering effects are described and the methods in which these may be utilized are discussed. A review of past and present aerospace applications is presented. The discussion addresses applications for both atmospheric earth flight as well as space flight. To complete the discussion, SMA design challenges and methodologies are addressed and the future of the field is examined.

[1]  Dimitris C. Lagoudas,et al.  Design of space systems using shape memory alloys , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[2]  Dimitris C. Lagoudas,et al.  Development of a Shape-Memory-Alloy Actuated Biomimetic Hydrofoil , 2002 .

[3]  J. Perkins,et al.  Shape Memory Effects in Alloys , 1975 .

[4]  J. Ro,et al.  Thermal post-buckling and aeroelastic behaviour of shape memory alloy reinforced plates , 2002 .

[5]  L. Brinson,et al.  Shape memory alloys, Part I: General properties and modeling of single crystals , 2006 .

[6]  Christopher A. Martin,et al.  Shape memory alloy TiNi actuators for twist control of smart wing designs , 1996, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[7]  Dimitris C. Lagoudas,et al.  MEMS-based active skin for turbulent drag reduction , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[8]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[9]  A. V. Srinivasan,et al.  Smart Structures: Analysis and Design , 2000 .

[10]  Dimitris C. Lagoudas,et al.  Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. Part I: constitutive model for fully dense SMAs , 2004 .

[11]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[12]  Ephrahim Garcia,et al.  SAMPSON smart inlet SMA powered adaptive lip design and static test , 2001 .

[13]  Dimitris C. Lagoudas,et al.  Fatigue life characterization of shape memory alloys undergoing thermomechanical cyclic loading , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[14]  Christopher A. Martin,et al.  Design, Fabrication, and Testing of the DARPA / Wright Lab "Smart Wing" Wind Tunnel Model , 1997 .

[15]  Paul E. Thoma,et al.  Effect of composition on the amount of second phase and transformation temperatures of NixTi90−xHf10 shape memory alloys , 1999 .

[16]  Robert J. Bernhard,et al.  Controlled continuous tuning of an adaptively tunable vibration absorber incorporating shape memory alloys , 2000, Smart Structures.

[17]  Jonathan E. Cooper,et al.  Development of smart vortex generators , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[18]  Frederick T. Calkins,et al.  Boeing's variable geometry chevron: morphing aerospace structures for jet noise reduction , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[19]  P. Meckl,et al.  Efficiency analysis of shape memory alloy actuators , 1994 .

[20]  Friedrich K. Straub,et al.  Development of an SMA Actuator for In-flight Rotor Blade Tracking , 2004 .

[21]  C. M. Wayman,et al.  Shape-Memory Materials , 2018 .

[22]  Robert G. Loewy,et al.  REVIEW ARTICLE: Recent developments in smart structures with aeronautical applications , 1997 .

[23]  John Yen,et al.  Design and Implementation of a Shape Memory Alloy Actuated Reconfigurable Airfoil , 2003 .

[24]  Dimitris C. Lagoudas,et al.  Shape memory alloys, Part II: Modeling of polycrystals , 2006 .

[25]  Inderjit Chopra,et al.  An Improved Shape Memory Alloy Actuator for Rotor Blade Tracking , 2003 .

[26]  Jeffrey D. Flamm,et al.  Shape memory alloy actuation for a variable area fan nozzle , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[27]  Jae-Hung Han,et al.  Finite element analysis of adaptive inflatable structures with SMA strip actuator , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[28]  Dimitris C. Lagoudas,et al.  Development of a fuel-powered shape memory alloy actuator system: I. Numerical analysis , 2007 .

[29]  Samuel M. Allen,et al.  6% magnetic-field-induced strain by twin-boundary motion in ferromagnetic Ni–Mn–Ga , 2000 .

[30]  Dimitris C. Lagoudas,et al.  On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment , 1995 .

[31]  D. M. Elzey,et al.  An Antagonistic Flexural Unit Cell for Design of Shape Morphing Structures , 2004 .

[32]  James H. Mabe,et al.  Boeing's Variable Geometry Chevron, Morphing Aerostructure for Jet Noise Reduction , 2006 .

[33]  Hideki Nagai,et al.  A novel technique for fabricating SMA/CFRP adaptive composites using ultrathin TiNi wires , 2004 .

[34]  C. Lexcellent,et al.  A general macroscopic description of the thermomechanical behavior of shape memory alloys , 1996 .

[35]  Inderjit Chopra,et al.  Design of an improved shape memory alloy actuator for rotor blade tracking , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[36]  Christopher A. Martin,et al.  Smart wing shape memory alloy actuator design and performance , 1997, Smart Structures.

[37]  Ephrahim Garcia,et al.  Smart structures and actuators: past, present, and future , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[38]  Victor Birman,et al.  Stability of functionally graded shape memory alloy sandwich panels , 1997 .

[39]  K. Denoyer,et al.  Development and transition of low-shock spacecraft release devices , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[40]  Gregory P. Carman,et al.  Fabrication of Active Thin Films for Vibration Damping In MEMS Devices for the Next Generation Army Munition Systems , 2006 .

[41]  Gary A. Fleming,et al.  Modeling, Fabrication, and Testing of a SMA Hybrid Composite Jet Engine Chevron Concept , 2006 .

[42]  C. M. Jackson,et al.  55-Nitinol - The Alloy with a Memory: It's Physical Metallurgy Properties, and Applications. NASA SP-5110 , 1972 .

[43]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part II : material characterization and experimental results for a stable transformation cycle , 1999 .

[44]  James G. Boyd,et al.  A thermodynamical constitutive model for shape memory materials. Part II. The SMA composite material , 1996 .

[45]  Dimitris C. Lagoudas,et al.  Nonlinear Vibration of a One-Degree of Freedom Shape Memory Alloy Oscillator: A Numerical-experimental Investigation , 2005 .

[46]  Dimitris C. Lagoudas,et al.  Thermomechanical characterization of NiTiCu and NiTi SMA actuators: influence of plastic strains , 2000 .

[47]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part III: evolution of plastic strains and two-way shape memory effect , 1999 .

[48]  Victor Birman,et al.  Review of Mechanics of Shape Memory Alloy Structures , 1997 .

[49]  Inderjit Chopra,et al.  Design of a variable twist tilt-rotor blade using shape memory alloy (SMA) actuators , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[50]  Dimitris C. Lagoudas,et al.  On thermomechanics and transformation surfaces of polycrystalline NiTi shape memory alloy material , 2000 .

[51]  Dimitris C. Lagoudas,et al.  Thermomechanical transformation fatigue of SMA actuators , 2000, Smart Structures.

[52]  Dimitris C. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part I: theoretical derivations , 1999 .

[53]  Aditi Chattopadhyay,et al.  Application of shape memory alloy (SMA) spars for aircraft maneuver enhancement , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[54]  Samuel M. Allen,et al.  Giant magnetic-field-induced strain in Ni-Mn-Ga crystals : experimental results and modeling , 2001 .

[55]  Fritz B. Prinz,et al.  Scalable rotary actuators with embedded shape memory alloys , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[56]  D. Lagoudas,et al.  Thermomechanical modeling of polycrystalline SMAs under cyclic loading, Part IV: modeling of minor hysteresis loops , 1999 .

[57]  Dimitris C. Lagoudas,et al.  Characterization and 3-D modeling of Ni60Ti SMA for actuation of a variable geometry jet engine chevron , 2007, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[58]  Ephrahim Garcia,et al.  Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[59]  D. M. Elzey,et al.  Shape-memory-based multifunctional structural actuator panels , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[60]  L. Brinson One-Dimensional Constitutive Behavior of Shape Memory Alloys: Thermomechanical Derivation with Non-Constant Material Functions and Redefined Martensite Internal Variable , 1993 .

[61]  D. Lagoudas,et al.  A UNIFIED THERMODYNAMIC CONSTITUTIVE MODEL FOR SMA AND FINITE ELEMENT ANALYSIS OF ACTIVE METAL MATRIX COMPOSITES , 1996 .

[62]  Dimitris C. Lagoudas,et al.  Thermomechanical characterization of high temperature SMA actuators , 2006, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[63]  J. N. Kudva,et al.  Overview of the DARPA Smart Wing Project , 2004 .

[64]  D. Lagoudas,et al.  Numerical implementation of a shape memory alloy thermomechanical constitutive model using return mapping algorithms , 2000 .

[65]  James H. Mabe,et al.  Design and Control of a Morphing Chevron for Takeoff and Cruise Noise Reduction , 2005 .

[66]  Dimitris C. Lagoudas,et al.  A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite , 2007 .

[67]  C. M. Wayman,et al.  Shape Memory and Transformation Behavior of Martensitic Ti-Pd-Ni and Ti-Pt-Ni Alloys , 1990 .

[68]  Dimitris C. Lagoudas,et al.  Development of a fuel-powered shape memory alloy actuator system: II. Fabrication and testing , 2007 .

[69]  Ephraim Gutmark,et al.  Heat Transfer Model for Blade Twist Actuator System , 2007 .

[70]  Jan Schrooten,et al.  Embedded shape memory alloys confer aerodynamic profile adaptivity , 2001 .

[71]  Arata Masuda,et al.  An overview of vibration and seismic applications of NiTi shape memory alloy , 2002 .

[72]  T. W. Duerig,et al.  Engineering Aspects of Shape Memory Alloys , 1990 .

[73]  T. Tadaki,et al.  Shape Memory Alloys , 2002 .

[74]  Dimitris C. Lagoudas,et al.  Thermomechanical Characterization and Modeling of Ni60Ti40 SMA for Actuated Chevrons , 2006 .

[75]  M. Omizo,et al.  Modeling , 1983, Encyclopedic Dictionary of Archaeology.

[76]  Antonio Concilio,et al.  Feasibility study on rotorcraft blade morphing in hovering , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[77]  Ephrahim Garcia,et al.  Defense Advanced Research Projects Agency – Smart Materials and Structures Demonstration Program Overview , 2004 .

[78]  Dimitris C. Lagoudas,et al.  Magnetic field-induced martensitic variant reorientation in magnetic shape memory alloys , 2005 .

[79]  Gregory P. Carman,et al.  Three-dimensional thin-film shape memory alloy microactuator with two-way effect , 2002 .