Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus

Sulfolobus solfataricus is a thermoacidophilic Archaeon that thrives in terrestrial hot springs (solfatares) with optimal growth at 80°C and pH 2–4. It catabolizes specific carbon sources, such as D-glucose, to pyruvate via the modified Entner-Doudoroff (ED) pathway. This pathway has two parallel branches, the semi-phosphorylative and the non-phosphorylative. However, the strategy of S.solfataricus to endure in such an extreme environment in terms of robustness and adaptation is not yet completely understood. Here, we present the first dynamic mathematical model of the ED pathway parameterized with quantitative experimental data. These data consist of enzyme activities of the branched pathway at 70°C and 80°C and of metabolomics data at the same temperatures for the wild type and for a metabolic engineered knockout of the semi-phosphorylative branch. We use the validated model to address two questions: 1. Is this system more robust to perturbations at its optimal growth temperature? 2. Is the ED robust to deletion and perturbations? We employed a systems biology approach to answer these questions and to gain further knowledge on the emergent properties of this biological system. Specifically, we applied deterministic and stochastic approaches to study the sensitivity and robustness of the system, respectively. The mathematical model we present here, shows that: 1. Steady state metabolite concentrations of the ED pathway are consistently more robust to stochastic internal perturbations at 80°C than at 70°C; 2. These metabolite concentrations are highly robust when faced with the knockout of either branch. Connected with this observation, these two branches show different properties at the level of metabolite production and flux control. These new results reveal how enzyme kinetics and metabolomics synergizes with mathematical modelling to unveil new systemic properties of the ED pathway in S.solfataricus in terms of its adaptation and robustness.

[1]  Gerald Penkler,et al.  Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum , 2015, The FEBS journal.

[2]  Lars K. Nielsen,et al.  A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions , 2015, PLoS Comput. Biol..

[3]  M. Quarto,et al.  Extremophiles Survival to Simulated Space Conditions: An Astrobiology Model Study , 2014, Origins of Life and Evolution of Biospheres.

[4]  B. Siebers,et al.  Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation , 2014, Microbiology and Molecular Reviews.

[5]  Lu Lin,et al.  Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. , 2013, Biotechnology advances.

[6]  D. Broomhead,et al.  A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes , 2013, FEBS letters.

[7]  Hans V Westerhoff,et al.  Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus , 2013, The FEBS journal.

[8]  M. Wagner,et al.  Unraveling the function of the two Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus solfataricus P2 , 2013, The FEBS journal.

[9]  Edda Klipp,et al.  Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast , 2012, Molecular systems biology.

[10]  J. Kouril Challenging metabolic networks at high temperature:: The central carbohydrate metabolism of Sulfolobus solfataricus , 2012 .

[11]  P. Wieloch Metabolomanalyse des hyperthermophilen Archaeons Sulfolobus solfataricus unter dem Einfluss von Temperaturveränderungen mit Gaschromatographie-Massenspektrometrie , 2012 .

[12]  P. Haferkamp Biochemical studies of enzymes involved in glycolysis of the thermoacidophilic crenarchaeon Sulfolobus solfataricus , 2011 .

[13]  D. Hoffmann,et al.  An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation? , 2011, Biochemical Society transactions.

[14]  Donald Cowan,et al.  Extremophiles in biofuel synthesis , 2010, Environmental technology.

[15]  Oliver Ebenhöh,et al.  Ground State Robustness as an Evolutionary Design Principle in Signaling Networks , 2009, PloS one.

[16]  C. Schleper,et al.  “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus , 2009, Extremophiles.

[17]  C. Schleper,et al.  SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation. , 2009, Biochemical Society transactions.

[18]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[19]  H. Kitano Towards a theory of biological robustness , 2007, Molecular systems biology.

[20]  Sun Bok Lee,et al.  Characterization of Sulfolobus solfataricus 2-Keto-3-deoxy-D-gluconate Kinase in the Modified Entner-Doudoroff Pathway , 2006, Bioscience, biotechnology, and biochemistry.

[21]  Steven D Bull,et al.  The Structural Basis of Substrate Promiscuity in Glucose Dehydrogenase from the Hyperthermophilic Archaeon Sulfolobus solfataricus* , 2006, Journal of Biological Chemistry.

[22]  Hanspeter Herzel,et al.  Robustness: A Key to Evolutionary Design , 2006 .

[23]  E. Klipp,et al.  Biochemical networks with uncertain parameters. , 2005, Systems biology.

[24]  G. Taylor,et al.  Promiscuity in the part‐phosphorylative Entner–Doudoroff pathway of the archaeon Sulfolobus solfataricus , 2005, FEBS letters.

[25]  B. Siebers,et al.  Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. , 2005, Current opinion in microbiology.

[26]  Thijs J. G. Ettema,et al.  The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. , 2005, The Biochemical journal.

[27]  Sun Bok Lee,et al.  Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. , 2005, The Biochemical journal.

[28]  G. Taylor,et al.  Gluconate dehydratase from the promiscuous Entner–Doudoroff pathway in Sulfolobus solfataricus , 2004, FEBS letters.

[29]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[30]  B. Tjaden,et al.  Embden-Meyerhof-Parnas and Entner-Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation? , 2004, Biochemical Society transactions.

[31]  Narinder I. Heyer,et al.  Metabolic Pathway Promiscuity in the Archaeon Sulfolobus solfataricus Revealed by Studies on Glucose Dehydrogenase and 2-Keto-3-deoxygluconate Aldolase* , 2003, Journal of Biological Chemistry.

[32]  Barbara M. Bakker,et al.  Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.

[33]  Doyle,et al.  Highly optimized tolerance: robustness and design in complex systems , 2000, Physical review letters.

[34]  Reinhart Heinrich,et al.  Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. , 2000, Biophysical journal.

[35]  D. Hough,et al.  An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. , 1999, The Biochemical journal.

[36]  P W Kuchel,et al.  Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. , 1999, The Biochemical journal.

[37]  J. Littlechild,et al.  Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. , 1999, Journal of molecular biology.

[38]  S. Kardinahl,et al.  The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme--an aldehyde oxidoreductase. , 1999, European journal of biochemistry.

[39]  T. Conway,et al.  What’s for Dinner?: Entner-Doudoroff Metabolism inEscherichia coli , 1998, Journal of bacteriology.

[40]  Leon D. Segal,et al.  Functions , 1995 .

[41]  M. de Rosa,et al.  Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1986, The Biochemical journal.

[42]  M. Danson,et al.  Metabolism of glucose via a modified Entner‐Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum , 1986 .

[43]  M. de Rosa,et al.  Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1984, The Biochemical journal.

[44]  J. Eyzaguirre,et al.  Phosphoenolpyruvate synthetase inMethanobacterium thermoautotrophicum , 1982, Archives of Microbiology.

[45]  W. Zillig,et al.  The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases , 1980, Archives of Microbiology.

[46]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[47]  M. Hassan,et al.  New Pathway for Nonphosphorylated Degradation of Gluconate by Aspergillus niger , 1973, Journal of bacteriology.

[48]  N. Entner,et al.  Glucose and gluconic acid oxidation of Pseudomonas saccharophila. , 1952, The Journal of biological chemistry.

[49]  O. Warburg,et al.  Isolierung und Kristallisation des Gärungsferments Enolase , 1941, Naturwissenschaften.

[50]  Carole Goble,et al.  The SEEK: a platform for sharing data and models in systems biology. , 2011, Methods in enzymology.

[51]  Barbara M. Bakker,et al.  Systems biology towards life in silico: mathematics of the control of living cells , 2009, Journal of mathematical biology.

[52]  Thijs J. G. Ettema,et al.  The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway , 2007, Extremophiles.

[53]  G. Gottschalk,et al.  The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum , 2004, Archiv für Mikrobiologie.

[54]  G. Eglinton,et al.  International Society for the Study of the Origin of Life , 2004, Space life sciences.

[55]  H. Santos,et al.  Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus , 2000, Archives of Microbiology.

[56]  L. Hochstein The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. , 1974, Canadian journal of microbiology.

[57]  robustness of , 2022 .