Systems biology of the modified branched Entner-Doudoroff pathway in Sulfolobus solfataricus
暂无分享,去创建一个
P. Ruoff | D. Schomburg | J. Schaber | A. S. Figueiredo | B. Siebers | D. Esser | T. Kouril | P. Haferkamp | P. Wieloch
[1] Gerald Penkler,et al. Construction and validation of a detailed kinetic model of glycolysis in Plasmodium falciparum , 2015, The FEBS journal.
[2] Lars K. Nielsen,et al. A General Framework for Thermodynamically Consistent Parameterization and Efficient Sampling of Enzymatic Reactions , 2015, PLoS Comput. Biol..
[3] M. Quarto,et al. Extremophiles Survival to Simulated Space Conditions: An Astrobiology Model Study , 2014, Origins of Life and Evolution of Biospheres.
[4] B. Siebers,et al. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation , 2014, Microbiology and Molecular Reviews.
[5] Lu Lin,et al. Dissecting and engineering metabolic and regulatory networks of thermophilic bacteria for biofuel production. , 2013, Biotechnology advances.
[6] D. Broomhead,et al. A model of yeast glycolysis based on a consistent kinetic characterisation of all its enzymes , 2013, FEBS letters.
[7] Hans V Westerhoff,et al. Intermediate instability at high temperature leads to low pathway efficiency for an in vitro reconstituted system of gluconeogenesis in Sulfolobus solfataricus , 2013, The FEBS journal.
[8] M. Wagner,et al. Unraveling the function of the two Entner–Doudoroff branches in the thermoacidophilic Crenarchaeon Sulfolobus solfataricus P2 , 2013, The FEBS journal.
[9] Edda Klipp,et al. Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast , 2012, Molecular systems biology.
[10] J. Kouril. Challenging metabolic networks at high temperature:: The central carbohydrate metabolism of Sulfolobus solfataricus , 2012 .
[11] P. Wieloch. Metabolomanalyse des hyperthermophilen Archaeons Sulfolobus solfataricus unter dem Einfluss von Temperaturveränderungen mit Gaschromatographie-Massenspektrometrie , 2012 .
[12] P. Haferkamp. Biochemical studies of enzymes involved in glycolysis of the thermoacidophilic crenarchaeon Sulfolobus solfataricus , 2011 .
[13] D. Hoffmann,et al. An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation? , 2011, Biochemical Society transactions.
[14] Donald Cowan,et al. Extremophiles in biofuel synthesis , 2010, Environmental technology.
[15] Oliver Ebenhöh,et al. Ground State Robustness as an Evolutionary Design Principle in Signaling Networks , 2009, PloS one.
[16] C. Schleper,et al. “Hot standards” for the thermoacidophilic archaeon Sulfolobus solfataricus , 2009, Extremophiles.
[17] C. Schleper,et al. SulfoSYS (Sulfolobus Systems Biology): towards a silicon cell model for the central carbohydrate metabolism of the archaeon Sulfolobus solfataricus under temperature variation. , 2009, Biochemical Society transactions.
[18] Hiroaki Kitano,et al. Biological robustness , 2008, Nature Reviews Genetics.
[19] H. Kitano. Towards a theory of biological robustness , 2007, Molecular systems biology.
[20] Sun Bok Lee,et al. Characterization of Sulfolobus solfataricus 2-Keto-3-deoxy-D-gluconate Kinase in the Modified Entner-Doudoroff Pathway , 2006, Bioscience, biotechnology, and biochemistry.
[21] Steven D Bull,et al. The Structural Basis of Substrate Promiscuity in Glucose Dehydrogenase from the Hyperthermophilic Archaeon Sulfolobus solfataricus* , 2006, Journal of Biological Chemistry.
[22] Hanspeter Herzel,et al. Robustness: A Key to Evolutionary Design , 2006 .
[23] E. Klipp,et al. Biochemical networks with uncertain parameters. , 2005, Systems biology.
[24] G. Taylor,et al. Promiscuity in the part‐phosphorylative Entner–Doudoroff pathway of the archaeon Sulfolobus solfataricus , 2005, FEBS letters.
[25] B. Siebers,et al. Unusual pathways and enzymes of central carbohydrate metabolism in Archaea. , 2005, Current opinion in microbiology.
[26] Thijs J. G. Ettema,et al. The semi-phosphorylative Entner-Doudoroff pathway in hyperthermophilic archaea: a re-evaluation. , 2005, The Biochemical journal.
[27] Sun Bok Lee,et al. Identification and characterization of Sulfolobus solfataricus D-gluconate dehydratase: a key enzyme in the non-phosphorylated Entner-Doudoroff pathway. , 2005, The Biochemical journal.
[28] G. Taylor,et al. Gluconate dehydratase from the promiscuous Entner–Doudoroff pathway in Sulfolobus solfataricus , 2004, FEBS letters.
[29] J. Stelling,et al. Robustness of Cellular Functions , 2004, Cell.
[30] B. Tjaden,et al. Embden-Meyerhof-Parnas and Entner-Doudoroff pathways in Thermoproteus tenax: metabolic parallelism or specific adaptation? , 2004, Biochemical Society transactions.
[31] Narinder I. Heyer,et al. Metabolic Pathway Promiscuity in the Archaeon Sulfolobus solfataricus Revealed by Studies on Glucose Dehydrogenase and 2-Keto-3-deoxygluconate Aldolase* , 2003, Journal of Biological Chemistry.
[32] Barbara M. Bakker,et al. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. , 2000, European journal of biochemistry.
[33] Doyle,et al. Highly optimized tolerance: robustness and design in complex systems , 2000, Physical review letters.
[34] Reinhart Heinrich,et al. Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. , 2000, Biophysical journal.
[35] D. Hough,et al. An extremely thermostable aldolase from Sulfolobus solfataricus with specificity for non-phosphorylated substrates. , 1999, The Biochemical journal.
[36] P W Kuchel,et al. Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. , 1999, The Biochemical journal.
[37] J. Littlechild,et al. Crystal structure of the glyceraldehyde-3-phosphate dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. , 1999, Journal of molecular biology.
[38] S. Kardinahl,et al. The strict molybdate-dependence of glucose-degradation by the thermoacidophile Sulfolobus acidocaldarius reveals the first crenarchaeotic molybdenum containing enzyme--an aldehyde oxidoreductase. , 1999, European journal of biochemistry.
[39] T. Conway,et al. What’s for Dinner?: Entner-Doudoroff Metabolism inEscherichia coli , 1998, Journal of bacteriology.
[40] Leon D. Segal,et al. Functions , 1995 .
[41] M. de Rosa,et al. Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1986, The Biochemical journal.
[42] M. Danson,et al. Metabolism of glucose via a modified Entner‐Doudoroff pathway in the thermoacidophilic archaebacterium Thermoplasma acidophilum , 1986 .
[43] M. de Rosa,et al. Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. , 1984, The Biochemical journal.
[44] J. Eyzaguirre,et al. Phosphoenolpyruvate synthetase inMethanobacterium thermoautotrophicum , 1982, Archives of Microbiology.
[45] W. Zillig,et al. The Sulfolobus-“Caldariella” group: Taxonomy on the basis of the structure of DNA-dependent RNA polymerases , 1980, Archives of Microbiology.
[46] M. M. Bradford. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.
[47] M. Hassan,et al. New Pathway for Nonphosphorylated Degradation of Gluconate by Aspergillus niger , 1973, Journal of bacteriology.
[48] N. Entner,et al. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. , 1952, The Journal of biological chemistry.
[49] O. Warburg,et al. Isolierung und Kristallisation des Gärungsferments Enolase , 1941, Naturwissenschaften.
[50] Carole Goble,et al. The SEEK: a platform for sharing data and models in systems biology. , 2011, Methods in enzymology.
[51] Barbara M. Bakker,et al. Systems biology towards life in silico: mathematics of the control of living cells , 2009, Journal of mathematical biology.
[52] Thijs J. G. Ettema,et al. The non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN) of Sulfolobus solfataricus: a key-enzyme of the semi-phosphorylative branch of the Entner–Doudoroff pathway , 2007, Extremophiles.
[53] G. Gottschalk,et al. The occurrence of a modified Entner-Doudoroff pathway in Clostridium aceticum , 2004, Archiv für Mikrobiologie.
[54] G. Eglinton,et al. International Society for the Study of the Origin of Life , 2004, Space life sciences.
[55] H. Santos,et al. Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus , 2000, Archives of Microbiology.
[56] L. Hochstein. The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. , 1974, Canadian journal of microbiology.
[57] robustness of , 2022 .