The Diversity and Co-occurrence Patterns of N2-Fixing Communities in a CO2-Enriched Grassland Ecosystem

[1]  Jonathan P Zehr,et al.  nifH pyrosequencing reveals the potential for location-specific soil chemistry to influence N2 -fixing community dynamics. , 2014, Environmental microbiology.

[2]  R. B. Jackson,et al.  Nitrogen Fertilization Has a Stronger Effect on Soil Nitrogen-Fixing Bacterial Communities than Elevated Atmospheric CO2 , 2014, Applied and Environmental Microbiology.

[3]  Daniel H. Buckley,et al.  A comprehensive aligned nifH gene database: a multipurpose tool for studies of nitrogen-fixing bacteria , 2014, Database J. Biol. Databases Curation.

[4]  Jordan A. Fish,et al.  Ecological Patterns of nifH Genes in Four Terrestrial Climatic Zones Explored with Targeted Metagenomics Using FrameBot, a New Informatics Tool , 2013, mBio.

[5]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[6]  Jizhong Zhou,et al.  Microevolution from shock to adaptation revealed strategies improving ethanol tolerance and production in Thermoanaerobacter , 2013, Biotechnology for Biofuels.

[7]  Jizhong Zhou,et al.  Elevated CO2 influences microbial carbon and nitrogen cycling , 2013, BMC Microbiology.

[8]  Antonio Gonzalez,et al.  Bacteria and diatom co-occurrence patterns in microbial mats from polar desert streams. , 2013, Environmental microbiology.

[9]  P. Reich,et al.  Decade-long soil nitrogen constraint on the CO2 fertilization of plant biomass , 2013 .

[10]  J. LaRoche,et al.  No stimulation of nitrogen fixation by non‐filamentous diazotrophs under elevated CO2 in the South Pacific , 2012, Global change biology.

[11]  R. Schmitz,et al.  Doubling of marine dinitrogen-fixation rates based on direct measurements , 2012, Nature.

[12]  Daniel H. Buckley,et al.  A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase , 2012, PloS one.

[13]  Curtis Huttenhower,et al.  Microbial Co-occurrence Relationships in the Human Microbiome , 2012, PLoS Comput. Biol..

[14]  M. Parker Legumes select symbiosis island sequence variants in Bradyrhizobium , 2012, Molecular ecology.

[15]  Noah Fierer,et al.  Using network analysis to explore co-occurrence patterns in soil microbial communities , 2011, The ISME Journal.

[16]  Feng Luo,et al.  Molecular ecological network analyses , 2012, BMC Bioinformatics.

[17]  K. Pregitzer,et al.  Forest productivity under elevated CO₂ and O₃: positive feedbacks to soil N cycling sustain decade-long net primary productivity enhancement by CO₂. , 2011, Ecology letters.

[18]  Jizhong Zhou,et al.  The Thermoanaerobacter Glycobiome Reveals Mechanisms of Pentose and Hexose Co-Utilization in Bacteria , 2011, PLoS genetics.

[19]  D. Caron,et al.  Marine bacterial, archaeal and protistan association networks reveal ecological linkages , 2011, The ISME Journal.

[20]  Jizhong Zhou,et al.  Phylogenetic Molecular Ecological Network of Soil Microbial Communities in Response to Elevated CO2 , 2011, mBio.

[21]  John Christian Gaby,et al.  A global census of nitrogenase diversity. , 2011, Environmental microbiology.

[22]  J. Zehr Nitrogen fixation by marine cyanobacteria. , 2011, Trends in microbiology.

[23]  R. B. Jackson,et al.  Increases in the flux of carbon belowground stimulate nitrogen uptake and sustain the long-term enhancement of forest productivity under elevated CO₂. , 2011, Ecology letters.

[24]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[25]  Ye Deng,et al.  Functional Molecular Ecological Networks , 2010, mBio.

[26]  Christopher L. Hemme,et al.  Hydrogen peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough. , 2010, Environmental microbiology.

[27]  Hubert Rehrauer,et al.  A global network of coexisting microbes from environmental and whole-genome sequence data. , 2010, Genome research.

[28]  J. Megonigal,et al.  Ecosystem response to elevated CO2 levels limited by nitrogen-induced plant species shift , 2010, Nature.

[29]  Michaela Müller,et al.  Rapid decay of unstable Leishmania mRNAs bearing a conserved retroposon signature 3′-UTR motif is initiated by a site-specific endonucleolytic cleavage without prior deadenylation , 2010, Nucleic acids research.

[30]  Jizhong Zhou,et al.  Metagenomic analysis reveals a marked divergence in the structure of belowground microbial communities at elevated CO2. , 2010, Ecology letters.

[31]  Damian Szklarczyk,et al.  eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations , 2009, Nucleic Acids Res..

[32]  R. Knight,et al.  Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data , 2009, The ISME Journal.

[33]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[34]  Adam P. Arkin,et al.  FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix , 2009, Molecular biology and evolution.

[35]  S. Hsu,et al.  Evidence for the functional significance of diazotroph community structure in soil , 2009, The ISME Journal.

[36]  R. Hill,et al.  Diversity and expression of nitrogen fixation genes in bacterial symbionts of marine sponges. , 2008, Environmental microbiology.

[37]  Jizhong Zhou,et al.  Characterization of the Shewanella oneidensis Fur gene: roles in iron and acid tolerance response , 2008, BMC Genomics.

[38]  Alexander F. Auch,et al.  MEGAN analysis of metagenomic data. , 2007, Genome research.

[39]  Feng Luo,et al.  Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory , 2007, BMC Bioinformatics.

[40]  Lily Shiue,et al.  Application of a nifH oligonucleotide microarray for profiling diversity of N2-fixing microorganisms in marine microbial mats. , 2006, Environmental microbiology.

[41]  K. Nüsslein,et al.  Distribution of Extensive nifH Gene Diversity Across Physical Soil Microenvironments , 2006, Microbial Ecology.

[42]  P. Reich,et al.  Nitrogen limitation constrains sustainability of ecosystem response to CO2 , 2006, Nature.

[43]  R. B. Jackson,et al.  Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest. , 2006, Ecology.

[44]  A. Burkovski,et al.  Ammonium Toxicity in Bacteria , 2006, Current Microbiology.

[45]  K. Konstantinidis,et al.  Genomic insights that advance the species definition for prokaryotes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  G. Asner,et al.  Nitrogen Cycles: Past, Present, and Future , 2004 .

[47]  W. Parton,et al.  Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide , 2004 .

[48]  J. Young,et al.  Diversity and specificity of Rhizobium leguminosarum biovar viciae on wild and cultivated legumes , 2004, Molecular ecology.

[49]  Jason Raymond,et al.  The natural history of nitrogen fixation. , 2004, Molecular biology and evolution.

[50]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[51]  S. Giovannoni,et al.  The uncultured microbial majority. , 2003, Annual review of microbiology.

[52]  Jonathan P Zehr,et al.  Nitrogenase gene diversity and microbial community structure: a cross-system comparison. , 2003, Environmental microbiology.

[53]  P. Reich,et al.  [Letters to nature] , 1975, Nature.

[54]  C. Field,et al.  Nitrogen limitation of microbial decomposition in a grassland under elevated CO2 , 2001, Nature.

[55]  R. Bally,et al.  Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. , 2001, Research in microbiology.

[56]  A. Hartmann,et al.  Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. , 2001, International journal of systematic and evolutionary microbiology.

[57]  J. Vanderleyden,et al.  Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. , 2000, FEMS microbiology reviews.

[58]  Jessica Gurevitch,et al.  THE META‐ANALYSIS OF RESPONSE RATIOS IN EXPERIMENTAL ECOLOGY , 1999 .

[59]  D. Schimel,et al.  Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems , 1999 .

[60]  Tadao Ando,et al.  Plant Nutrition for Sustainable Food Production and Environment , 2016, Developments in Plant and Soil Sciences.

[61]  T. Koike,et al.  Effects of high CO2 on nodule formation in roots of Japanese mountain alder seedlings grown under two nutrient levels , 1997 .

[62]  José Costa,et al.  PicoGreen quantitation of DNA: effective evaluation of samples pre- or post-PCR , 1996, Nucleic Acids Res..

[63]  J. Tiedje,et al.  DNA recovery from soils of diverse composition , 1996, Applied and environmental microbiology.

[64]  G. Stacey Bradyrhizobium japonicum nodulation genetics. , 1995, FEMS microbiology letters.

[65]  J. Nagy,et al.  Design and application of a free-air carbon dioxide enrichment facility , 1994 .

[66]  T. Hurek,et al.  Azospirillum halopraeferens sp. nov., a Nitrogen-Fixing Organism Associated with Roots of Kallar Grass (Leptochloa fusca (L.) Kunth) , 1987 .

[67]  M. H. Gaskins,et al.  Plant Growth Substances Produced by Azospirillum brasilense and Their Effect on the Growth of Pearl Millet (Pennisetum americanum L.) , 1979, Applied and environmental microbiology.