Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs.

[1]  M. Bjorkqvist,et al.  Studies on hysteresis reduction in thermally carbonized porous silicon humidity sensor , 2006, IEEE Sensors Journal.

[2]  V. Lehto,et al.  Determination of drug load in porous silicon microparticles by calorimetry , 2005 .

[3]  J. Salonen,et al.  Use of thermoanalytical methods in quantification of drug load in mesoporous silicon microparticles , 2005 .

[4]  Chad A. Mirkin,et al.  Nanobiotechnology :concepts, applications and perspectives , 2005 .

[5]  M. Vallet‐Regí,et al.  Mesoporous SBA-15 HPLC evaluation for controlled gentamicin drug delivery. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[6]  J. Devoisselle,et al.  Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[7]  J. Salonen,et al.  Stabilization of porous silicon surface by thermal decomposition of acetylene , 2004 .

[8]  F. Palumbo,et al.  Drug Delivery Devices Based on Mesoporous Silicate , 2004, Drug delivery.

[9]  Bruno C. Hancock,et al.  What is the True Solubility Advantage for Amorphous Pharmaceuticals? , 2000, Pharmaceutical Research.

[10]  Peter W. Swaan,et al.  Microfabricated Porous Silicon Particles Enhance Paracellular Delivery of Insulin Across Intestinal Caco-2 Cell Monolayers , 2004, Pharmaceutical Research.

[11]  J. Salonen,et al.  Comparison of stabilizing treatments on porous silicon for sensor applications , 2003 .

[12]  M. Vallet‐Regí,et al.  MCM-41 Organic Modification as Drug Delivery Rate Regulator , 2003 .

[13]  Rebecca S. Shawgo,et al.  BioMEMS for drug delivery , 2002 .

[14]  T. Desai,et al.  Bioadhesive microdevices with multiple reservoirs: a new platform for oral drug delivery. , 2002, Journal of controlled release : official journal of the Controlled Release Society.

[15]  J. Salonen,et al.  Thermal carbonization of porous silicon surface by acetylene , 2002 .

[16]  Michael Levin Waiver of In Vivo Bioavailability and Bioequivalence Studies for Immediate-Release Solid Oral Dosage Forms Based on a Biopharmaceutics Classification System , 2001 .

[17]  Tejal A. Desai,et al.  Nanoporous biocapsules for the encapsulation of insulinoma cells: biotransport and biocompatibility considerations , 2001, IEEE Transactions on Biomedical Engineering.

[18]  J. Salonen,et al.  Effects of Fabrication Parameters on Porous p+‐Type Silicon Morphology , 2000 .

[19]  J. Salonen,et al.  Chemical stability studies of thermally-carbonized porous silicon , 2000 .

[20]  L. Canham,et al.  Derivatized Mesoporous Silicon with Dramatically Improved Stability in Simulated Human Blood Plasma , 1999 .

[21]  Michael J. Sailor,et al.  Chemical Modification of Crystalline Porous Silicon Surfaces , 1999 .

[22]  M. Cima,et al.  A controlled-release microchip , 1999, Nature.

[23]  Leigh T. Canham,et al.  Properties of Porous Silicon , 1998 .

[24]  J. Salonen,et al.  Thermal oxidation of free-standing porous silicon films , 1997 .

[25]  L. Canham Bioactive silicon structure fabrication through nanoetching techniques , 1995 .