Mode-locking in an optical microresonator via soliton formation

The discovery of passive mode-locking of lasers via saturable absorbers[1] has led to optical femto-second pulses with applications ranging from eye surgery to the analysis of chemical reactions on ultra-short timescales[2, 3]. In the optical frequency domain a train of such pulses corresponds to a frequency comb (equidistant optical laser lines spaced by the pulse repetition rate)[4, 5], which find use in precision spectroscopy and optical frequency metrology[6, 7]. In an alternative approach, not relying on modelocking, frequency combs can also be generated in continuously driven, Kerr-nonlinear optical microresonators via cascaded parametric four-wave mixing[8–14]. Applying a pulse-shaping mode-locking mechanism could enable compact and robust femtosecond pulse generators. However, saturable absorbers are challenging to apply to microresonators as they affect the high quality factor essential to nonlinear frequency conversion. Here, we demonstrate passive mode-locking in microresonators via soliton formation. In contrast to soliton mode-locked lasers [15] a stabilizing saturable absorber is not required due to the parametric gain mechanism. We observe the generation of pulses with 200 fs duration and low noise frequency comb spectra with low line-to-line power variation. Numerical modeling of the nonlinear coupled mode equations is used to physically understand the mode-locking and in combination with an analytical description allows the identification of mode-locked regimes. The presented results open the route towards compact, high repetition-rate femto-second sources, where the operating wavelength is not bound to the availability of laser gain media or saturable absorbers. The smooth optical soliton spectra are essential to frequency domain applications such as channel generators in advanced telecommunication or in fundamental studies such as astrophysical spectrometer calibration[12, 16–18]. Moreover, femto-second pulses in conjunction with external broadening provide a viable route to a microresonator RF-to-optical link[5, 19].

[1]  A. Matsko,et al.  Mode-locked Kerr frequency combs. , 2011, Optics letters.

[2]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[3]  R. Lefever,et al.  Spatial dissipative structures in passive optical systems. , 1987, Physical review letters.

[4]  H. Haus Mode-locking of lasers , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[5]  J. Caraquitena,et al.  Spectral Line-by-Line Pulse Shaping , 2005, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[6]  Jun Ye,et al.  Colloquium: Femtosecond optical frequency combs , 2003 .

[7]  T. Hänsch,et al.  Laser Frequency Combs for Astronomical Observations , 2008, Science.

[8]  N. Yu,et al.  Modal expansion approach to optical-frequency-comb generation with monolithic whispering-gallery-mode resonators , 2010 .

[9]  N. Matuschek,et al.  Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics. , 1999, Science.

[10]  I. V. Barashenkov,et al.  Existence and stability chart for the ac-driven, damped nonlinear Schrödinger solitons. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  S Wabnitz,et al.  Suppression of interactions in a phase-locked soliton optical memory. , 1993, Optics letters.

[12]  A. Matsko,et al.  On excitation of breather solitons in an optical microresonator. , 2012, Optics letters.

[13]  Nathan R. Newbury,et al.  Searching for applications with a fine-tooth comb , 2011 .

[14]  M. L. Gorodetskii,et al.  Thermal Nonlinear Effects in Optical Whispering Gallery Microresonators , 1992 .

[15]  M. Gorodetsky,et al.  Frequency comb assisted diode laser spectroscopy for measurement of microcavity dispersion , 2009, 0907.0143.

[16]  R. Holzwarth,et al.  Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators , 2013, Nature Communications.

[17]  Michal Lipson,et al.  Octave-spanning frequency comb generation in a silicon nitride chip. , 2011, Optics letters.

[18]  Alexander L. Gaeta,et al.  Modelocking and Femtosecond Pulse Generation in Chip-Based Frequency Combs , 2013 .

[19]  Andrew Szentgyorgyi,et al.  A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s-1 , 2008, Nature.

[20]  Hansuek Lee,et al.  Low-pump-power, low-phase-noise, and microwave to millimeter-wave repetition rate operation in microcombs. , 2012, Physical review letters.

[21]  Michal Lipson,et al.  Silicon-based monolithic optical frequency comb source. , 2011, Optics express.

[22]  T. Kippenberg,et al.  Optical frequency comb generation from a monolithic microresonator , 2007, Nature.

[23]  William J. Firth,et al.  Cavity and Feedback Solitons , 2002 .

[24]  Scott A. Diddams,et al.  Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb , 2011, 1106.2487.

[25]  K. Vahala,et al.  Dynamical thermal behavior and thermal self-stability of microcavities , 2004, (CLEO). Conference on Lasers and Electro-Optics, 2005..

[26]  Michal Lipson,et al.  CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects , 2010 .

[27]  M. Gorodetsky,et al.  Universal formation dynamics and noise of Kerr-frequency combs in microresonators , 2012, Nature Photonics.

[28]  Nan Yu,et al.  Frequency comb from a microresonator with engineered spectrum. , 2012, Optics express.

[29]  K. Vahala Optical microcavities , 2003, Nature.

[30]  T. Kippenberg,et al.  Full stabilization of a microresonator-based optical frequency comb. , 2008, Physical review letters.

[31]  Günter Steinmeyer,et al.  Carrier-envelope offset phase control: A novel concept for absolute optical frequency measurement and ultrashort pulse generation , 1999 .

[32]  Michal Lipson,et al.  High-speed optical sampling using a silicon-chip temporal magnifier. , 2009, Optics express.

[33]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[34]  C. Koos,et al.  Microresonator-based optical frequency combs for high-bitrate WDM data transmission , 2012, OFC/NFOEC.

[35]  Scott A. Diddams,et al.  Mechanical Control of a Microrod-Resonator Optical Frequency Comb , 2012, 1205.4272.

[36]  Roberto Morandotti,et al.  CMOS-compatible integrated optical hyper-parametric oscillator , 2010 .

[37]  T. Kippenberg,et al.  Microresonator based optical frequency combs , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[38]  Michal Lipson,et al.  Chip-based frequency combs with sub-100 GHz repetition rates. , 2012, Optics letters.

[39]  Lute Maleki,et al.  Tunable optical frequency comb with a crystalline whispering gallery mode resonator. , 2008, Physical review letters.

[40]  P. Grelu,et al.  Dissipative solitons for mode-locked lasers , 2012, Nature Photonics.

[41]  S. Coen,et al.  Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer , 2010 .

[42]  T. Sylvestre,et al.  Modeling of octave-spanning Kerr frequency combs using a generalized mean-field Lugiato-Lefever model. , 2012, Optics letters.

[43]  M. Gorodetsky,et al.  Octave spanning tunable frequency comb from a microresonator. , 2011, Physical review letters.

[44]  Ursula Keller,et al.  Soliton mode-locking with saturable absorbers , 1996 .

[45]  U. Keller Recent developments in compact ultrafast lasers , 2003, Nature.

[46]  Scott A. Diddams,et al.  Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb , 2007, Nature.

[47]  Multistability and soliton modes in nonlinear microwave resonators , 1984 .

[48]  A. A. Savchenkov,et al.  Miniature Optical Atomic Clock: Stabilization of a Kerr Comb Oscillator , 2013 .