Observers design for a class of nonlinear singular systems

This paper presents a new approach for observer design for a class of nonlinear singular systems which can be transformed into a special normal form. The interest of the proposed form is to facilitate the observer synthesis for the studied nonlinear singular systems. Necessary and sufficient geometrical conditions are deduced in order to guarantee the existence of a diffeomorphism which transforms the studied nonlinear singular systems into the proposed normal form.

[1]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[2]  Mohamed Darouach,et al.  Observers for a Class of Nonlinear Singular Systems , 2008, IEEE Transactions on Automatic Control.

[3]  Saïd Mammar,et al.  Design of proportional-integral observer for unknown input descriptor systems , 2002, IEEE Trans. Autom. Control..

[4]  Daniel W. C. Ho,et al.  Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[5]  Driss Boutat,et al.  Single Output-Dependent Observability Normal Form , 2007, SIAM J. Control. Optim..

[6]  Driss Boutat,et al.  New algorithm for observer error linearization with a diffeomorphism on the outputs , 2009, Autom..

[7]  Peter C. Müller,et al.  Observer design for descriptor systems , 1999, IEEE Trans. Autom. Control..

[8]  Driss Boutat,et al.  A nonlinear canonical form for reduced order observer design , 2010 .

[9]  M. Darouach,et al.  Reduced-order observer design for descriptor systems with unknown inputs , 1996, IEEE Trans. Autom. Control..

[10]  S. Campbell Singular systems of differential equations II , 1980 .

[11]  Janos Turi,et al.  An observer for a nonlinear descriptor system , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[12]  A. Phelps On constructing nonlinear observers , 1991 .

[13]  M. Darouach,et al.  Full-order observers for linear systems with unknown inputs , 1994, IEEE Trans. Autom. Control..

[14]  Mohamed Darouach,et al.  Data reconciliation in generalized linear dynamic systems , 1991 .

[15]  Arthur J. Krener,et al.  Linearization by output injection and nonlinear observers , 1983 .

[16]  C. Moog,et al.  New algebraic-geometric conditions for the linearization by input-output injection , 1996, IEEE Trans. Autom. Control..

[17]  X. Xia,et al.  Nonlinear observer design by observer error linearization , 1989 .

[18]  Driss Boutat,et al.  Synchronisation of chaotic systems via reduced observers , 2011 .

[19]  H. Keller Non-linear observer design by transformation into a generalized observer canonical form , 1987 .