Flexible editing of human motion by three‐way decomposition

This paper proposes a new generative model for flexible editing of human motion. Different from previous work, three intuitive factors of motion, namely, content, identity and style, can be manipulated directly with the new model. With the new generative model, motion editing can be achieved in various aspects, including transferring an unknown style from an actor to another, synthesizing other styles for an unknown actor and generating a new motion with other content. Copyright © 2013 John Wiley & Sons, Ltd.

[1]  Joshua B. Tenenbaum,et al.  Separating Style and Content with Bilinear Models , 2000, Neural Computation.

[2]  Yong Cao,et al.  Style components , 2006, Graphics Interface.

[3]  Ahmed M. Elgammal,et al.  The Role of Manifold Learning in Human Motion Analysis , 2006, Human Motion.

[4]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[5]  Shihong Xia,et al.  Modeling style and variation in human motion , 2010, 2010 4th International Universal Communication Symposium.

[6]  Michael F. Cohen,et al.  Verbs and Adverbs: Multidimensional Motion Interpolation , 1998, IEEE Computer Graphics and Applications.

[7]  Aapo Hyvärinen,et al.  Emergence of Phase- and Shift-Invariant Features by Decomposition of Natural Images into Independent Feature Subspaces , 2000, Neural Computation.

[8]  Lucas Kovar,et al.  Automated extraction and parameterization of motions in large data sets , 2004, ACM Trans. Graph..

[9]  Aaron Hertzmann,et al.  Style machines , 2000, SIGGRAPH 2000.

[10]  Pascal Fua,et al.  Style‐Based Motion Synthesis † , 2004, Comput. Graph. Forum.

[11]  Yu Jian Style synthesis and editing of motion data in non-linear subspace , 2008 .

[12]  Ahmed M. Elgammal,et al.  Human Motion Synthesis by Motion Manifold Learning and Motion Primitive Segmentation , 2006, AMDO.

[13]  Jessica K. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, ACM Trans. Graph..

[14]  David A. Forsyth,et al.  Generalizing motion edits with Gaussian processes , 2009, ACM Trans. Graph..

[15]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[16]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[17]  Ahmed M. Elgammal,et al.  Separating style and content on a nonlinear manifold , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[18]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[19]  Mark H. Overmars,et al.  Real Time Animation of Virtual Humans: A Trade‐off Between Naturalness and Control , 2010, Comput. Graph. Forum.

[20]  Gengdai Liu,et al.  Style subspaces for character animation , 2008, Comput. Animat. Virtual Worlds.

[21]  Lucas Kovar,et al.  Motion Graphs , 2002, ACM Trans. Graph..

[22]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[23]  L. R. Rabiner,et al.  A comparative study of several dynamic time-warping algorithms for connected-word recognition , 1981, The Bell System Technical Journal.

[24]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[25]  Tido Röder,et al.  Documentation Mocap Database HDM05 , 2007 .

[26]  Alexis Héloir,et al.  Temporal alignment of communicative gesture sequences , 2006, Comput. Animat. Virtual Worlds.

[27]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[28]  A. Egges,et al.  Evaluating distance metrics for animation blending , 2009, FDG.

[29]  Jinxiang Chai,et al.  Synthesis and editing of personalized stylistic human motion , 2010, I3D '10.