A strontium quantum-gas microscope

The development of quantum-gas microscopes has brought novel ways of probing quantum degenerate many-body systems at the single-atom level. Until now, most of these setups have focused on alkali atoms. Expanding quantum-gas microscopy to alkaline-earth elements will provide new tools, such as SU(N)-symmetric fermionic isotopes or ultranarrow optical transitions, to the field of quantum simulation. Here, we demonstrate the site-resolved imaging of a $^{84}$Sr bosonic quantum gas in a Hubbard-regime optical lattice. The quantum gas is confined by a two-dimensional in-plane lattice and a light-sheet potential, which operate at the strontium clock-magic wavelength of 813.4 nm. We realize fluorescence imaging using the broad 461 nm transition, which provides high spatial resolution. Simultaneously, we perform attractive Sisyphus cooling with the narrow 689 nm intercombination line. We reconstruct the atomic occupation from the fluorescence images, obtaining imaging fidelities above 94%. Finally, we realize a $^{84}$Sr superfluid in the Bose-Hubbard regime. We observe its interference pattern upon expansion, a probe of phase coherence, with single-atom resolution. Our strontium quantum-gas microscope provides a new platform to study dissipative Hubbard models, quantum optics in atomic arrays, and SU(N) fermions at the microscopic level.

[1]  J. Zeiher,et al.  High-fidelity detection of large-scale atom arrays in an optical lattice , 2023, 2309.04717.

[2]  E. Knill,et al.  An atomic boson sampler , 2023, 2307.06936.

[3]  M. Greiner,et al.  Dipolar quantum solids emerging in a Hubbard quantum simulator , 2023, Nature.

[4]  T. Fukuhara,et al.  Observation of chiral-mode domains in a frustrated XY model on optical triangular lattices , 2023, Physical Review Research.

[5]  R. Hutson,et al.  Observation of mHz-level cooperative Lamb shifts in an optical atomic clock , 2023, 2303.05613.

[6]  L. Tarruell,et al.  Atom-Number Enhancement by Shielding Atoms From Losses in Strontium Magneto-Optical Traps , 2023, Physical Review Applied.

[7]  I. Bloch,et al.  Observation of Brane Parity Order in Programmable Optical Lattices , 2023, Physical Review X.

[8]  T. Giamarchi,et al.  Observation of universal Hall response in strongly interacting Fermions , 2022, Science.

[9]  R. Spreeuw,et al.  Narrow-line imaging of single strontium atoms in shallow optical tweezers , 2022, Physical Review Research.

[10]  Andrew M. Childs,et al.  Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice , 2022, Science.

[11]  A. Kaufman,et al.  Long-lived Bell states in an array of optical clock qubits , 2021, Nature Physics.

[12]  A. J. Park,et al.  Cavity-Enhanced Optical Lattices for Scaling Neutral Atom Quantum Technologies to Higher Qubit Numbers , 2021, PRX Quantum.

[13]  N. Yao,et al.  Quantum gas microscopy of Kardar-Parisi-Zhang superdiffusion , 2021, Science.

[14]  P. Schauss,et al.  Site-Resolved Imaging of Ultracold Fermions in a Triangular-Lattice Quantum Gas Microscope , 2021, 2102.11862.

[15]  C. Gross,et al.  Quantum gas microscopy for single atom and spin detection , 2020, Nature Physics.

[16]  R. Scalettar,et al.  Observation of antiferromagnetic correlations in an ultracold SU(N) Hubbard model , 2020, Nature Physics.

[17]  T. Fukuhara,et al.  Tools for quantum simulation with ultracold atoms in optical lattices , 2020, Nature Reviews Physics.

[18]  D. Stamper-Kurn,et al.  A subradiant optical mirror formed by a single structured atomic layer , 2020, Nature.

[19]  Peter T. Brown,et al.  Subdiffusion and Heat Transport in a Tilted Two-Dimensional Fermi-Hubbard System , 2019, Physical Review X.

[20]  F. Gerbier,et al.  Anomalous decay of coherence in a dissipative many-body system , 2019, Nature Physics.

[21]  A. J. Park,et al.  Fast and dense magneto-optical traps for strontium , 2019, Physical Review A.

[22]  M. Wilde,et al.  Optical Atomic Clocks , 2019, 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC).

[23]  M. Rispoli,et al.  Quantum critical behaviour at the many-body localization transition , 2018, Nature.

[24]  M. Weidemüller,et al.  Analyzing a single-laser repumping scheme for efficient loading of a strontium magneto-optical trap , 2018, Physical Review A.

[25]  A. Cooper,et al.  2000-Times Repeated Imaging of Strontium Atoms in Clock-Magic Tweezer Arrays. , 2018, Physical review letters.

[26]  A. Cooper,et al.  Alkaline-Earth Atoms in Optical Tweezers , 2018, Physical Review X.

[27]  A. Kaufman,et al.  Microscopic Control and Detection of Ultracold Strontium in Optical-Tweezer Arrays , 2018, Physical Review X.

[28]  Hao Zhang,et al.  Spin transport in a Mott insulator of ultracold fermions , 2018, Science.

[29]  Peter T. Brown,et al.  Bad metallic transport in a cold atom Fermi-Hubbard system , 2018, Science.

[30]  Jun Ye,et al.  Imaging Optical Frequencies with 100  μHz Precision and 1.1  μm Resolution. , 2017, Physical review letters.

[31]  F. Gerbier,et al.  Clock spectroscopy of interacting bosons in deep optical lattices , 2017, 1707.04307.

[32]  L. Livi,et al.  State-dependent interactions in ultracold 174Yb probed by optical clock spectroscopy , 2017, 1707.04269.

[33]  M. Holland,et al.  Narrow-line laser cooling by adiabatic transfer , 2017, 1707.01944.

[34]  Shuta Nakajima,et al.  Observation of the Mott insulator to superfluid crossover of a driven-dissipative Bose-Hubbard system , 2017, Science Advances.

[35]  M. Kozuma,et al.  Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms , 2017, 1704.07060.

[36]  L. Sonderhouse,et al.  A Fermi-degenerate three-dimensional optical lattice clock , 2017, Science.

[37]  E. Demler,et al.  A cold-atom Fermi–Hubbard antiferromagnet , 2016, Nature.

[38]  Peter T. Brown,et al.  Spin-imbalance in a 2D Fermi-Hubbard system , 2016, Science.

[39]  C Clivati,et al.  Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition. , 2016, Physical review letters.

[40]  S. Bromley,et al.  Spin–orbit-coupled fermions in an optical lattice clock , 2016, Nature.

[41]  Jae-yoon Choi,et al.  Exploring the many-body localization transition in two dimensions , 2016, Science.

[42]  I. Bloch,et al.  Direct Probing of the Mott Crossover in the SU(N) Fermi-Hubbard Model , 2015, 1511.07287.

[43]  I. Bloch,et al.  Microscopic Observation of Pauli Blocking in Degenerate Fermionic Lattice Gases. , 2015, Physical review letters.

[44]  Kohei Kato,et al.  An ytterbium quantum gas microscope with narrow-line laser cooling , 2015, 1509.03233.

[45]  M. Greiner,et al.  Site-resolved imaging of fermionic ^{6}Li in an optical lattice. , 2015, Physical review letters.

[46]  Vinay V Ramasesh,et al.  Quantum-gas microscope for fermionic atoms. , 2015, Physical review letters.

[47]  Graham D. Bruce,et al.  Single-atom imaging of fermions in a quantum-gas microscope , 2015, Nature Physics.

[48]  M. Kozuma,et al.  Site-resolved imaging of ytterbium atoms in a two-dimensional optical lattice , 2014, 1410.5189.

[49]  M. Cazalilla,et al.  Ultracold Fermi gases with emergent SU(N) symmetry , 2014, Reports on progress in physics. Physical Society.

[50]  R. Grimm,et al.  Production of quantum-degenerate strontium gases , 2012, 1212.2539.

[51]  K. Bongs,et al.  Long-range interacting many-body systems with alkaline-earth-metal atoms. , 2012, Physical review letters.

[52]  U. Schollwock,et al.  Quantum dynamics of a mobile spin impurity , 2012, Nature Physics.

[53]  R. Yamazaki,et al.  An SU(6) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling , 2012, Nature Physics.

[54]  T. Esslinger,et al.  Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice , 2011, Nature.

[55]  V. V. Ivanov,et al.  Laser-driven Sisyphus cooling in an optical dipole trap , 2011, 1110.3439.

[56]  M. Troyer,et al.  Simultaneous dimerization and SU(4) symmetry breaking of 4-color fermions on the square lattice. , 2011, Physical review letters.

[57]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[58]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[59]  M. Greiner,et al.  Probing the Superfluid–to–Mott Insulator Transition at the Single-Atom Level , 2010, Science.

[60]  T. Killian,et al.  Degenerate Fermi gas of (87)Sr. , 2010, Physical review letters.

[61]  T. Killian,et al.  Bose-Einstein Condensation of 84-Sr , 2009, 0910.3222.

[62]  R. Grimm,et al.  Bose-Einstein condensation of strontium. , 2009, Physical review letters.

[63]  A. Rey,et al.  Mott insulators of ultracold fermionic alkaline Earth atoms: underconstrained magnetism and chiral spin liquid. , 2009, Physical review letters.

[64]  P. Zoller,et al.  Quantum computing with alkaline-Earth-metal atoms. , 2008, Physical review letters.

[65]  Jun Ye,et al.  Quantum State Engineering and Precision Metrology Using State-Insensitive Light Traps , 2008, Science.

[66]  N. Prokof'ev,et al.  Monte Carlo study of the two-dimensional Bose-Hubbard model , 2007, 0710.2703.

[67]  S. Rolston,et al.  A lattice of double wells for manipulating pairs of cold atoms. , 2006, cond-mat/0602103.

[68]  H. Katori,et al.  Recoil-free spectroscopy of neutral Sr atoms in the Lamb-Dicke regime. , 2003, Physical review letters.

[69]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[70]  Tetsuya Ido,et al.  Magneto-Optical Trapping and Cooling of Strontium Atoms down to the Photon Recoil Temperature , 1999 .

[71]  John L. Hall,et al.  Cold collisions of Sr * -Sr in a magneto-optical trap , 1999 .

[72]  Cirac,et al.  Cooling and localization of atoms in laser-induced potential wells. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[73]  L. Lucy An iterative technique for the rectification of observed distributions , 1974 .

[74]  William H. Richardson,et al.  Bayesian-Based Iterative Method of Image Restoration , 1972 .