Functional chromatin features are associated with structural mutations in cancer

[1]  Jeffrey H. Chuang,et al.  Functional chromatin features are associated with structural mutations in cancer , 2014, BMC Genomics.

[2]  Niranjan Nagarajan,et al.  Systems consequences of amplicon formation in human breast cancer , 2014, Genome research.

[3]  Cheng-Zhong Zhang,et al.  Chromothripsis and beyond: rapid genome evolution from complex chromosomal rearrangements , 2013, Genes & development.

[4]  Yan Li,et al.  A high-resolution map of three-dimensional chromatin interactome in human cells , 2013, Nature.

[5]  M. Shen Chromoplexy: a new category of complex rearrangements in the cancer genome. , 2013, Cancer cell.

[6]  Lovelace J. Luquette,et al.  Diverse Mechanisms of Somatic Structural Variations in Human Cancer Genomes , 2013, Cell.

[7]  Ryan M. Layer,et al.  Breakpoint profiling of 64 cancer genomes reveals numerous complex rearrangements spawned by homology-independent mechanisms , 2013, Genome research.

[8]  A. Sivachenko,et al.  Punctuated Evolution of Prostate Cancer Genomes , 2013, Cell.

[9]  S. Gabriel,et al.  Somatic rearrangements across cancer reveal classes of samples with distinct patterns of DNA breakage and rearrangement-induced hypermutability , 2012, Genome research.

[10]  Edison T Liu,et al.  Structural mutations in cancer: mechanistic and functional insights. , 2012, Trends in genetics : TIG.

[11]  Data production leads,et al.  An integrated encyclopedia of DNA elements in the human genome , 2012 .

[12]  Vishwanath R Iyer,et al.  Genome-wide Studies of CCCTC-binding Factor (CTCF) and Cohesin Provide Insight into Chromatin Structure and Regulation* , 2012, The Journal of Biological Chemistry.

[13]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[14]  J. Lindberg,et al.  Identification of novel CHD1-associated collaborative alterations of genomic structure and functional assessment of CHD1 in prostate cancer , 2012, Oncogene.

[15]  S. Boulton,et al.  Playing the end game: DNA double-strand break repair pathway choice. , 2012, Molecular cell.

[16]  M. Stratton,et al.  Tandem duplication of chromosomal segments is common in ovarian and breast cancer genomes , 2012, The Journal of pathology.

[17]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[18]  Francesca Chiaromonte,et al.  A genome-wide analysis of common fragile sites: What features determine chromosomal instability in the human genome? , 2012, Genome research.

[19]  A. Børresen-Dale,et al.  The Life History of 21 Breast Cancers , 2012, Cell.

[20]  Michael S. Becker,et al.  Spatial Organization of the Mouse Genome and Its Role in Recurrent Chromosomal Translocations , 2012, Cell.

[21]  M. Nussenzweig,et al.  Translocation capture sequencing: a method for high throughput mapping of chromosomal rearrangements. , 2012, Journal of immunological methods.

[22]  David A. Orlando,et al.  Master Transcription Factors Determine Cell-Type-Specific Responses to TGF-β Signaling , 2011, Cell.

[23]  Stefano Monti,et al.  Genome-wide Translocation Sequencing Reveals Mechanisms of Chromosome Breaks and Rearrangements in B Cells , 2011, Cell.

[24]  Kristian Cibulskis,et al.  Genomic sequencing of colorectal adenocarcinomas identifies a recurrent VTI1A-TCF7L2 fusion , 2011, Nature Genetics.

[25]  A. McKenna,et al.  The Mutational Landscape of Head and Neck Squamous Cell Carcinoma , 2011, Science.

[26]  Chee Seng Chan,et al.  Comprehensive long-span paired-end-tag mapping reveals characteristic patterns of structural variations in epithelial cancer genomes. , 2011, Genome research.

[27]  Timothy J. Durham,et al.  "Systematic" , 1966, Comput. J..

[28]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[29]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[30]  P. Cook,et al.  The DNA moves, not the polymerase , 2011 .

[31]  A. Børresen-Dale,et al.  COMPLEX LANDSCAPES OF SOMATIC REARRANGEMENT IN HUMAN BREAST CANCER GENOMES , 2009, Nature.

[32]  Jie Zhang,et al.  Nuclear Receptor-Induced Chromosomal Proximity and DNA Breaks Underlie Specific Translocations in Cancer , 2009, Cell.

[33]  I. Amit,et al.  Comprehensive mapping of long range interactions reveals folding principles of the human genome , 2011 .

[34]  Dustin E. Schones,et al.  Global analysis of the insulator binding protein CTCF in chromatin barrier regions reveals demarcation of active and repressive domains. , 2008, Genome research.

[35]  Peter R. Cook,et al.  Similar active genes cluster in specialized transcription factories , 2008, The Journal of cell biology.

[36]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[37]  Juliet A. Ellis,et al.  The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. , 2001, Human molecular genetics.

[38]  P. Seeburg,et al.  Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. , 2000, Science.

[39]  J. Spivak,et al.  Commentary on and reprint of Nowell PC, Hungerford DA, A minute chromosome in human chronic granulocytic leukemia, in Science (1960) 132:1497 , 2000 .

[40]  P. Nowell,et al.  A minute chromosome in human chronic granulocytic leukemia , 1960 .