The Calderón inverse problem for isotropic quasilinear conductivities

[1]  Yi-Hsuan Lin,et al.  Inverse problems for elliptic equations with fractional power type nonlinearities , 2020, Journal of Differential Equations.

[2]  G. Uhlmann,et al.  Partial data inverse problems for quasilinear conductivity equations , 2020, Mathematische Annalen.

[3]  A. Feizmohammadi,et al.  A density property for tensor products of gradients of harmonic functions and applications , 2020, Journal of Functional Analysis.

[4]  M. Salo,et al.  Linearized Calderón problem and exponentially accurate quasimodes for analytic manifolds , 2020, Advances in Mathematics.

[5]  G. Uhlmann,et al.  Inverse problems for nonlinear magnetic Schr\"odinger equations on conformally transversally anisotropic manifolds , 2020, 2009.05089.

[6]  A. Feizmohammadi,et al.  An inverse boundary value problem for certain anisotropic quasilinear elliptic equations , 2020, Journal of Differential Equations.

[7]  Ru-Yu Lai,et al.  Partial Data Inverse Problems for Nonlinear Magnetic Schr\"odinger Equations , 2020, 2007.02475.

[8]  Gerald B. Folland,et al.  Introduction to Partial Differential Equations , 2020 .

[9]  G. Uhlmann,et al.  The Calderón problem for quasilinear elliptic equations , 2020 .

[10]  M. Kar,et al.  Recovery of coefficients for a weighted p-Laplacian perturbed by a linear second order term , 2020, Inverse Problems.

[11]  R. Shankar Recovering a quasilinear conductivity from boundary measurements , 2019, Inverse Problems.

[12]  G. Uhlmann,et al.  Partial data inverse problems for semilinear elliptic equations with gradient nonlinearities , 2019, Mathematical Research Letters.

[13]  M. Salo,et al.  Partial data inverse problems and simultaneous recovery of boundary and coefficients for semilinear elliptic equations , 2019, Revista Matemática Iberoamericana.

[14]  G. Uhlmann,et al.  A remark on partial data inverse problems for semilinear elliptic equations , 2019, Proceedings of the American Mathematical Society.

[15]  L. Oksanen,et al.  An inverse problem for a semi-linear elliptic equation in Riemannian geometries , 2019, Journal of Differential Equations.

[16]  M. Salo,et al.  Inverse problems for elliptic equations with power type nonlinearities , 2019, Journal de Mathématiques Pures et Appliquées.

[17]  Gen Nakamura,et al.  Reconstruction for the coefficients of a quasilinear elliptic partial differential equation , 2019, Appl. Math. Lett..

[18]  Cătălin I. Cârstea On an inverse boundary value problem for a nonlinear time-harmonic Maxwell system , 2018, Journal of Inverse and Ill-posed Problems.

[19]  G. Uhlmann,et al.  Inverse problems for Lorentzian manifolds and non-linear hyperbolic equations , 2014, 1405.3386.

[20]  E. Thomas,et al.  A polarization identity for multilinear maps , 2013, 1309.1275.

[21]  H. Egger,et al.  Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem , 2013, 1306.6026.

[22]  Alexander Stanoyevitch,et al.  Introduction to Partial Differential Equations , 2011, 1901.03022.

[23]  Boaz Haberman,et al.  Uniqueness in Calderón’s problem with Lipschitz conductivities , 2011, 1108.6068.

[24]  Matti Lassas,et al.  Determining Electrical and Heat Transfer Parameters Using Coupled Boundary Measurements , 2010, SIAM J. Math. Anal..

[25]  Masahiro Yamamoto,et al.  The Calderón problem with partial data in two dimensions , 2010 .

[26]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[27]  Guillaume Bal,et al.  Inverse diffusion theory of photoacoustics , 2009, 0910.2503.

[28]  L. Tzou,et al.  Calderon inverse Problem with partial data on Riemann Surfaces , 2009, 0908.1417.

[29]  C. Kenig,et al.  Limiting Carleman weights and anisotropic inverse problems , 2008, 0803.3508.

[30]  P. Olver,et al.  Introduction to Partial Differential Equations , 2007 .

[31]  G. Uhlmann,et al.  The Calderón problem with partial data , 2004, math/0405486.

[32]  Zhenyu Guo,et al.  A review of electrical impedance techniques for breast cancer detection. , 2003, Medical engineering & physics.

[33]  Ziqi Sun,et al.  AN INVERSE BOUNDARY VALUE PROBLEM FOR QUASILINEAR ELLIPTIC EQUATIONS , 2002 .

[34]  G. Uhlmann,et al.  RECOVERING A POTENTIAL FROM PARTIAL CAUCHY DATA , 2002 .

[35]  Matti Lassas,et al.  On determining a Riemannian manifold from the Dirichlet-to-Neumann map , 2001 .

[36]  G. Uhlmann,et al.  Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform , 2000, math/0001099.

[37]  G. Uhlmann,et al.  Inverse problems in quasilinear anisotropic media , 1997 .

[38]  Peter Hähner,et al.  A Periodic Faddeev-Type Solution Operator , 1996 .

[39]  Victor Isakov,et al.  GLOBAL UNIQUENESS FOR A TWO-DIMENSIONAL SEMILINEAR ELLIPTIC INVERSE PROBLEM , 1995 .

[40]  J. Sylvester,et al.  Global uniqueness for a semilinear elliptic inverse problem , 1994 .

[41]  G. Keller,et al.  The Geoelectrical Methods in Geophysical Exploration , 1994 .

[42]  V. Isakov,et al.  On uniqueness in inverse problems for semilinear parabolic equations , 1993 .

[43]  L. Hörmander,et al.  The boundary problems of physical geodesy , 1976 .

[44]  A. Bukhgeǐm,et al.  Recovering a potential from Cauchy data in the two-dimensional case , 2008 .

[45]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[46]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[47]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[48]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[49]  Ziqi Sun On a quasilinear inverse boundary value problem , 1996 .

[50]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .