Automata finiteness criterion in terms of van der Put series of automata functions

In the paper we develop the p-adic theory of discrete automata. Every automaton $\mathfrak{A}$ (transducer) whose input/output alphabets consist of p symbols can be associated to a continuous (in fact, 1-Lipschitz) map from p-adic integers to p-adic integers, the automaton function $f_\mathfrak{A} $. The p-adic theory (in particular, the p-adic ergodic theory) turned out to be very efficient in a study of properties of automata expressed via properties of automata functions. In the paper we prove a criterion for finiteness of the number of states of automaton in terms of van der Put series of the automaton function. The criterion displays connections between p-adic analysis and the theory of automata sequences.

[1]  Andrei Khrennikov,et al.  Applied Algebraic Dynamics , 2009 .

[2]  Jean Vuillemin,et al.  On Circuits and Numbers , 1994, IEEE Trans. Computers.

[3]  Jean Vuillemin Finite Digital Synchronous Circuits Are Characterized by 2-Algebraic Truth Tables , 2000, ASIAN.

[4]  Igor Volovich,et al.  p-adic string , 1987 .

[5]  Jeffrey Shallit,et al.  Automatic Sequences: Theory, Applications, Generalizations , 2003 .

[6]  J. Shallit,et al.  Automatic Sequences: Frequency of Letters , 2003 .

[7]  Vladimir Anashin,et al.  Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .

[8]  W. H. Schikhof Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .

[9]  R. Grigorchuk,et al.  Some topics in the dynamics of group actions on rooted trees , 2011 .

[10]  K. Mahler p-adic numbers and their functions , 1981 .

[11]  I. V. Volovich,et al.  Superanalysis. II. Integral calculus , 1984 .

[12]  Jeffrey Shallit,et al.  Automatic Sequences by Jean-Paul Allouche , 2003 .

[13]  K. Hensel,et al.  Über eine neue Begründung der Theorie der algebraischen Zahlen. , 1897 .

[14]  Jean Berstel Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.

[15]  Jean Vuillemin,et al.  Digital Algebra and Circuits , 2003, Verification: Theory and Practice.

[16]  V. S. Vladimirov,et al.  P-adic analysis and mathematical physics , 1994 .

[17]  Jean-Éric Pin,et al.  Profinite Methods in Automata Theory , 2009, STACS.

[18]  J. Shallit,et al.  Automatic Sequences: Contents , 2003 .

[19]  I. V. Volovich,et al.  SUPERANALYSIS. I. DIFFERENTIAL CALCULUS , 1984 .