Automata finiteness criterion in terms of van der Put series of automata functions
暂无分享,去创建一个
[1] Andrei Khrennikov,et al. Applied Algebraic Dynamics , 2009 .
[2] Jean Vuillemin,et al. On Circuits and Numbers , 1994, IEEE Trans. Computers.
[3] Jean Vuillemin. Finite Digital Synchronous Circuits Are Characterized by 2-Algebraic Truth Tables , 2000, ASIAN.
[4] Igor Volovich,et al. p-adic string , 1987 .
[5] Jeffrey Shallit,et al. Automatic Sequences: Theory, Applications, Generalizations , 2003 .
[6] J. Shallit,et al. Automatic Sequences: Frequency of Letters , 2003 .
[7] Vladimir Anashin,et al. Characterization of ergodicity of p-adic dynamical systems by using the van der Put basis , 2011 .
[8] W. H. Schikhof. Ultrametric Calculus: An Introduction to p-Adic Analysis , 1984 .
[9] R. Grigorchuk,et al. Some topics in the dynamics of group actions on rooted trees , 2011 .
[10] K. Mahler. p-adic numbers and their functions , 1981 .
[11] I. V. Volovich,et al. Superanalysis. II. Integral calculus , 1984 .
[12] Jeffrey Shallit,et al. Automatic Sequences by Jean-Paul Allouche , 2003 .
[13] K. Hensel,et al. Über eine neue Begründung der Theorie der algebraischen Zahlen. , 1897 .
[14] Jean Berstel. Review of "Automatic sequences: theory, applications, generalizations" by Jean-Paul Allouche and Jeffrey Shallit. Cambridge University Press. , 2004, SIGA.
[15] Jean Vuillemin,et al. Digital Algebra and Circuits , 2003, Verification: Theory and Practice.
[16] V. S. Vladimirov,et al. P-adic analysis and mathematical physics , 1994 .
[17] Jean-Éric Pin,et al. Profinite Methods in Automata Theory , 2009, STACS.
[18] J. Shallit,et al. Automatic Sequences: Contents , 2003 .
[19] I. V. Volovich,et al. SUPERANALYSIS. I. DIFFERENTIAL CALCULUS , 1984 .