暂无分享,去创建一个
David Rohde | Dmytro Mykhaylov | Flavian Vasile | Olivier Jeunen | Martin Bompaire | Alexandre Gilotte
[1] Evangelia Christakopoulou,et al. Local Item-Item Models For Top-N Recommendation , 2016, RecSys.
[2] H. Shimodaira,et al. Improving predictive inference under covariate shift by weighting the log-likelihood function , 2000 .
[3] Neil D. Lawrence,et al. When Training and Test Sets Are Different: Characterizing Learning Transfer , 2009 .
[4] Thorsten Joachims,et al. Counterfactual Risk Minimization: Learning from Logged Bandit Feedback , 2015, ICML.
[5] Alexandros Karatzoglou,et al. RecoGym: A Reinforcement Learning Environment for the problem of Product Recommendation in Online Advertising , 2018, ArXiv.
[6] Lars Schmidt-Thieme,et al. Online-updating regularized kernel matrix factorization models for large-scale recommender systems , 2008, RecSys '08.
[7] Thorsten Joachims,et al. Batch learning from logged bandit feedback through counterfactual risk minimization , 2015, J. Mach. Learn. Res..
[8] Yi Su,et al. CAB: Continuous Adaptive Blending for Policy Evaluation and Learning , 2019, ICML.
[9] E. Ionides. Truncated Importance Sampling , 2008 .
[10] Thorsten Joachims,et al. The Self-Normalized Estimator for Counterfactual Learning , 2015, NIPS.
[11] John Langford,et al. The Epoch-Greedy Algorithm for Multi-armed Bandits with Side Information , 2007, NIPS.
[12] Yifan Hu,et al. Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[13] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .
[14] Eduardo F. Morales,et al. An Introduction to Reinforcement Learning , 2011 .
[15] M. de Rijke,et al. Deep Learning with Logged Bandit Feedback , 2018, ICLR.
[16] Matthew D. Hoffman,et al. Variational Autoencoders for Collaborative Filtering , 2018, WWW.