Inhibition of DAT function attenuates manganese accumulation in the globus pallidus.

[1]  Michael Aschner,et al.  Manganese accumulates in iron-deficient rat brain regions in a heterogeneous fashion and is associated with neurochemical alterations , 2007, Biological Trace Element Research.

[2]  Yusuke Murayama,et al.  Tracing neural circuits in vivo with Mn-enhanced MRI. , 2006, Magnetic resonance imaging.

[3]  B. Fisher,et al.  Behavioral motor recovery in the 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐lesioned squirrel monkey (Saimiri sciureus): Changes in striatal dopamine and expression of tyrosine hydroxylase and dopamine transporter proteins , 2006, Journal of neuroscience research.

[4]  Michael Aschner,et al.  Increased manganese uptake by primary astrocyte cultures with altered iron status is mediated primarily by divalent metal transporter. , 2006, Neurotoxicology.

[5]  Sara R. Jones,et al.  Manganese accumulation in striatum of mice exposed to toxic doses is dependent upon a functional dopamine transporter. , 2005, Environmental toxicology and pharmacology.

[6]  E. Tiffany-Castiglioni,et al.  The Bipyridyl Herbicide Paraquat Produces Oxidative Stress-Mediated Toxicity in Human Neuroblastoma SH-SY5Y Cells: Relevance to the Dopaminergic Pathogenesis , 2005, Journal of toxicology and environmental health. Part A.

[7]  D. Smith,et al.  Manganese oxidation state mediates toxicity in PC12 cells. , 2005, Toxicology and applied pharmacology.

[8]  C. François,et al.  Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus , 2005, Experimental Neurology.

[9]  David C. Dorman,et al.  Manganese Dosimetry: Species Differences and Implications for Neurotoxicity , 2005, Critical reviews in toxicology.

[10]  M. Aschner,et al.  Globus pallidus: a target brain region for divalent metal accumulation associated with dietary iron deficiency. , 2004, The Journal of nutritional biochemistry.

[11]  Robert A Yokel,et al.  Manganese toxicokinetics at the blood-brain barrier. , 2004, Research report.

[12]  J. Roth,et al.  Iron interactions and other biological reactions mediating the physiological and toxic actions of manganese. , 2003, Biochemical pharmacology.

[13]  J. Connor,et al.  Iron and iron management proteins in neurobiology. , 2001, Pediatric neurology.

[14]  J. Beard,et al.  Iron deficiency alters dopamine transporter functioning in rat striatum. , 2000, The Journal of nutrition.

[15]  M. Golub,et al.  Chronic marginal iron intakes during early development in mice alter brain iron concentrations and behavior despite postnatal iron supplementation. , 2000, The Journal of nutrition.

[16]  J. Connor,et al.  Cellular distribution of iron in the brain of the Belgrade rat , 1999, Neuroscience.

[17]  Martin Lévesque,et al.  The axonal arborization of single nigrostriatal neurons in rats , 1999, Brain Research.

[18]  J. Connor,et al.  Existing and emerging mechanisms for transport of iron and manganese to the brain , 1999, Journal of neuroscience research.

[19]  D B Calne,et al.  Manganese neurotoxicity: a review of clinical features, imaging and pathology. , 1999, Neurotoxicology.

[20]  M. Verity Manganese neurotoxicity: a mechanistic hypothesis. , 1999, Neurotoxicology.

[21]  E. Montgomery,et al.  Central nervous system toxicity of manganese. II: Cocaine or reserpine inhibit manganese concentration in the rat brain. , 1999, Neurotoxicology.

[22]  B. Borowsky,et al.  Neurotransmitter transporters: molecular biology, function, and regulation. , 1995, International review of neurobiology.

[23]  W. Sloot,et al.  Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia , 1994, Brain Research.

[24]  M. Kuhar,et al.  [3H]WIN 35,065–2: A Ligand for Cocaine Receptors in Striatum , 1990, Journal of Neurochemistry.

[25]  L. Rochette,et al.  Dopamine and norepinephrine turnover in various regions of the rat brain after chronic manganese chloride administration. , 1982, Toxicology.