A New Description of Pure C in Developing the Third Generation of Calphad Databases

In connection to developing the third generation of Calphad databases a new thermodynamic description is presented for unary carbon. Models used in this work have more physical basis and are valid down to 0 K. The anisotropy in graphite, caused by weak Van der Waals inter-plane forces makes it impossible to fit the heat capacity data by a single Einstein temperature for modelling the harmonic vibration of the atoms. By using multiple Einstein temperatures this problem is solved and a good agreement with the experimental data at both low and other temperatures is achieved. Diamond is modeled using multiple Einstein temperatures due to its specific heat capacities at very low temperatures too, and the two-state model is used for modelling the liquid phase.

[1]  Jana Pavlů,et al.  Extension of SGTE data for pure elements to zero Kelvin temperature - A case study , 2012 .

[2]  R. Cowley,et al.  The thermodynamic and optical properties of germanium, silicon, diamond and gallium arsenide , 1966 .

[3]  Georg Kresse,et al.  Ab initio Force Constant Approach to Phonon Dispersion Relations of Diamond and Graphite , 1995 .

[4]  J. Maultzsch,et al.  Phonon Dispersion in Graphite , 2004 .

[5]  N. H. March,et al.  Liquid Phase Metal-Non Metal Transition In Carbon , 1979 .

[6]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[7]  John Ågren,et al.  Thermodynamics of Supercooled Liquids and their Glass Transition , 1988 .

[8]  J. Maultzsch,et al.  Elasticity of single-crystalline graphite: Inelastic x-ray scattering study , 2007 .

[9]  Kenneth S. Pitzer,et al.  Heats, free energies, and equilibrium constants of some reactions involving O2, H2, H2O, C, CO, CO2, and CH4 , 1945 .

[10]  J. Cannon Behavior of the Elements at High Pressures , 1974 .

[11]  A. Kuwabara,et al.  Debye temperature and stiffness of carbon and boron nitride polymorphs from first principles calculations , 2006 .

[12]  Nicola Marzari,et al.  First-principles determination of the structural, vibrational and thermodynamic properties of diamond, graphite, and derivatives , 2004, cond-mat/0412643.

[13]  K. Rieder,et al.  Surface phonon dispersion in graphite and in a lanthanum graphite intercalation compound , 1997 .

[14]  A. Macrander,et al.  PHONON DISPERSION OF DIAMOND MEASURED BY INELASTIC X-RAY SCATTERING , 1998 .

[15]  A. N. Syverud,et al.  JANAF Thermochemical Tables, 1982 Supplement , 1982 .

[16]  Andrew C. Victor,et al.  Heat Capacity of Diamond at High Temperatures , 1962 .

[17]  A. Miiller,et al.  Specific heat capacity and electrical resistivity of a carbon-carbon composite in the range 1500–3000 K by a pulse heating method , 1980 .

[18]  R. Berman,et al.  On the Graphite ‐ Diamond Equilibrium , 1955 .

[19]  D. Young,et al.  Thermodynamic properties of carbon up to the critical point , 1973 .

[20]  J. Badding,et al.  FLAPW investigation of the stability and equation of state of rectangulated carbon , 2002 .

[21]  Baroni,et al.  Ab initio lattice dynamics of diamond. , 1993, Physical review. B, Condensed matter.

[22]  T. Tanaka,et al.  Analysis of phonons in graphene sheets by means of HREELS measurement and ab initio calculation , 2005 .

[23]  L. Kaufman,et al.  Relation of the Thermochemistry and Phase Diagrams of Condensed Systems , 1975 .

[24]  A. Khvan,et al.  A thermodynamic description of data for pure Pb from 0 K using the expanded Einstein model for the solid and the two state model for the liquid phase , 2018 .

[25]  R. McDonald Heat Content and Heat Capacity of an Extruded Graphite from 341° to 1723° K. , 1965 .

[26]  Huahai Mao,et al.  New description of metastable hcp phase for unaries Fe and Mn: Coupling between first‐principles calculations and CALPHAD modeling , 2016 .

[27]  J. Ågren,et al.  Thermodynamics of stable and metastable structures in Fe–C system , 2014 .

[28]  F. Bundy Melting of Graphite at Very High Pressure , 1963 .

[29]  A. Dinsdale SGTE data for pure elements , 1991 .

[30]  Harry G. Drickamer,et al.  Effect of High Pressure on the Lattice Parameters of Diamond, Graphite, and Hexagonal Boron Nitride , 1966 .

[31]  A. Miiller,et al.  Heat capacity and electrical resistivity of palladium in the range 1400 to 1800 K by a pulse heating method , 1980 .

[32]  Wei Xiong,et al.  Thermodynamic modelling of crystalline unary phases , 2014 .

[33]  H. Brooks,et al.  THE LATTICE VIBRATION SPECIFIC HEAT OF GRAPHITE , 1953 .

[34]  G. Grimvall Thermophysical properties of materials , 1986 .

[35]  H. G. Smith,et al.  Lattice Dynamics of Pyrolytic Graphite , 1972 .

[36]  U. Kattner,et al.  Thermodynamic models and data for pure elements and other endmembers of solutions , 1995 .

[37]  F. Bundy,et al.  Diamond‐Graphite Equilibrium Line from Growth and Graphitization of Diamond , 1961 .

[38]  Georg Kresse,et al.  Accurate bulk properties from approximate many-body techniques. , 2009, Physical review letters.

[39]  Phonon and plasmon excitation in inelastic electron tunneling spectroscopy of graphite , 2003, cond-mat/0310666.

[40]  B. Alder,et al.  BEHAVIOR OF STRONGLY SHOCKED CARBON , 1961 .

[41]  J. Ågren,et al.  Thermodynamic modelling of liquids: CALPHAD approaches and contributions from statistical physics , 2014 .

[42]  G. Kresse,et al.  Erratum: Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes [Phys. Rev. B67, 035401 (2003)] , 2004 .

[43]  R. Souda,et al.  Surface phonon dispersion curves of graphite (0001) over the entire energy region , 1988 .

[44]  Richard Dronskowski,et al.  Thermodynamic properties of cementite (Fe3C) , 2010 .

[45]  F. Rossini,et al.  Heat and free energy of formation of carbon dioxide, and of the transition between graphite and diamond , 1938 .

[46]  A. G. Worthing Atomic heats of tungsten and of carbon at incandescent temperatures , 1918 .

[47]  B. Yates,et al.  Anisotropic Thermal Expansion of Pyrolytic Graphite at Low Temperatures , 1970 .

[48]  E. H. Buyco,et al.  Specific Heat: Nonmetallic Solids , 1970 .

[49]  Georg Kresse,et al.  Accurate density functional calculations for the phonon dispersion relations of graphite layer and carbon nanotubes , 2003 .

[50]  F. Bundy,et al.  Direct Conversion of Graphite to Diamond in Static Pressure Apparatus. , 1962, Science.

[51]  E. Chang,et al.  Determination of Graphite-Liquid-Vapor Triple Point by Laser Heating , 1976 .

[52]  D. Haaland Graphite-liquid-vapor triple point pressure and the density of liquid carbon☆☆☆ , 1976 .

[53]  Rainer Schmid-Fetzer,et al.  An alternative use of Kieffer’s lattice dynamics model using vibrational density of states for constructing thermodynamic databases , 2013, Physics and Chemistry of Minerals.

[54]  I. B. Kutsenok,et al.  Universal Method for Approximating the Standard Thermodynamic Functions of Solids , 2013 .

[55]  Wojciech Grochala,et al.  Diamond: electronic ground state of carbon at temperatures approaching 0 K. , 2014, Angewandte Chemie.

[56]  D. Riley,et al.  The thermal expansion of graphite from 15?c. to 800?c.: part I. Experimental , 1945 .

[57]  Thermal expansion coefficients of graphite crystals , 1972 .

[58]  Bo Sundman,et al.  Modeling of thermodynamic properties for Bcc, Fcc, liquid, and amorphous iron , 2001 .

[59]  P. Gustafson An evaluation of the thermodynamic properties and the P, T phase diagram of carbon , 1986 .

[60]  Huahai Mao,et al.  Thermodynamic evaluation of pure Co for the third generation of thermodynamic databases , 2017 .

[61]  Stefano de Gironcoli,et al.  Ab initio phonon calculations in solids , 1996 .

[62]  Sedigheh Bigdeli,et al.  On the third‐generation Calphad databases: An updated description of Mn , 2015 .

[63]  Gene Dresselhaus,et al.  Lattice-dynamical model for graphite , 1982 .

[64]  R. Palmer,et al.  Phonons in graphite studied by eels , 1987 .

[65]  W. Desorbo,et al.  The Specific Heat of Graphite from 13° to 300°K , 1953 .