Extended empirical likelihood for estimating equations

We derive an extended empirical likelihood for parameters defined by estimating equations which generalizes the original empirical likelihood to the full parameter space. Under mild conditions, the extended empirical likelihood has all the asymptotic properties of the original empirical likelihood. The first-order extended empirical likelihood is easy to use and substantially more accurate than the original empirical likelihood.

[1]  Jiahua Chen,et al.  Finite-sample properties of the adjusted empirical likelihood , 2013 .

[2]  A. Owen Empirical likelihood ratio confidence intervals for a single functional , 1988 .

[3]  A. Owen Empirical Likelihood Ratio Confidence Regions , 1990 .

[4]  Min Tsao,et al.  Empirical likelihood on the full parameter space , 2013, 1311.1959.

[5]  J. Lawless,et al.  Empirical Likelihood and General Estimating Equations , 1994 .

[6]  Peter Hall,et al.  Methodology and algorithms of empirical likelihood , 1990 .

[7]  Bovas Abraham,et al.  Adjusted Empirical Likelihood and its Properties , 2008 .

[8]  Anna Clara Monti Empirical likelihood confidence regions in time series models , 1997 .

[9]  Hengjian Cui,et al.  On the second-order properties of empirical likelihood with moment restrictions , 2007 .

[10]  A penalized version of the empirical likelihood ratio for the population mean , 2007 .

[11]  Min Tsao Bounds on coverage probabilities of the empirical likelihood ratio confidence regions , 2004 .

[12]  A. Davison,et al.  Reliable Inference from Empirical Likelihoods , 1995 .

[13]  Soumendra N. Lahiri,et al.  A penalized empirical likelihood method in high dimensions , 2013, 1302.3071.

[14]  Xiaotong Shen,et al.  Empirical Likelihood , 2002 .

[15]  Yukun Liu,et al.  ADJUSTED EMPIRICAL LIKELIHOOD WITH HIGH-ORDER PRECISION , 2010, 1010.0313.

[16]  Thomas J. DiCiccio,et al.  Empirical Likelihood is Bartlett-Correctable , 1991 .

[17]  Min Tsao,et al.  Extending the empirical likelihood by domain expansion , 2013 .

[18]  Art B. Owen,et al.  Calibration of the empirical likelihood method for a vector mean , 2009 .