Surface energy of the one-dimensional supersymmetric $t-J$ model with general integrable boundary terms in the antiferromagnetic sector

Pei Sun, 2 Yang-Yang Chen, 3 Tao Yang, 2, 4, 3, ∗ Junpeng Cao, 4, 6, 7, † and Wen-Li Yang 2, 4, 3, ‡ School of Physics, Northwest University, Xi’an 710127, China Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China Institute of Modern Physics, Northwest University, Xi’an 710127, China Peng Huanwu Center for Fundamental Theory, Xi’an 710127, China Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China School of Physical Science, University of Chinese Academy of Sciences, Beijing 100049, China (Dated: November 10, 2021)

[1]  J. Cardy,et al.  Conformal Invariance and Surface Critical Behavior , 1984 .

[2]  G. Blatter,et al.  Supersymmetric t-J model in one dimension: Separation of spin and charge. , 1990, Physical review letters.

[3]  Yang,et al.  Correlation functions in the one-dimensional t-J model. , 1990, Physical review letters.

[4]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[5]  F. Verstraete,et al.  Nested algebraic Bethe ansatz for the supersymmetric t -J model and tensor networks , 2014, 1411.2839.

[6]  W. Galléas Spectrum of the supersymmetric t–J model with non-diagonal open boundaries , 2007, nlin/0703003.

[7]  N. Nagaosa,et al.  Electron-phonon coupling and a polaron in the t-J model: from the weak to the strong coupling regime. , 2004, Physical review letters.

[8]  Förster Staggered spin and statistics in the supersymmetric t-J model. , 1989, Physical review letters.

[9]  A. Foerster,et al.  Algebraic properties of the Bethe ansatz for an spl(2,1)-supersymmetric t- J model , 1993 .

[10]  A. Foerster,et al.  The supersymmetric t- J model with quantum group invariance , 1993 .

[11]  Wiegmann,et al.  Superconductivity in strongly correlated electronic systems and confinement versus deconfinement phenomenon. , 1988, Physical review letters.

[12]  Ogata,et al.  Exact solution of the t-J model in one dimension at 2t=+/-J: Ground state and excitation spectrum. , 1991, Physical review. B, Condensed matter.

[13]  P. Schlottmann,et al.  Integrable narrow-band model with possible relevance to heavy-fermion systems. , 1987, Physical review. B, Condensed matter.

[14]  C. Lai Lattice gas with nearest‐neighbor interaction in one dimension with arbitrary statistics , 1974 .

[15]  Exact thermodynamics and Luttinger liquid properties of the integrable t-J model , 1996, cond-mat/9611058.

[16]  Korepin,et al.  New exactly solvable model of strongly correlated electrons motivated by high-Tc superconductivity. , 1992, Physical review letters.

[17]  Integrable boundary impurities in the /t-/J model with different gradings , 2000, cond-mat/0008429.

[18]  Thermodynamics and Crossover Phenomena in the Correlation Lengths of the One-Dimensional t-J Model , 2002, cond-mat/0212437.

[19]  E. Sklyanin Boundary conditions for integrable quantum systems , 1988 .

[20]  Wen-Li Yang,et al.  T − W relation and free energy of the Heisenberg chain at a finite temperature , 2021, Journal of High Energy Physics.

[21]  S. Sarkar Bethe-ansatz solution of the t-J model , 1990 .

[22]  Wen-Li Yang,et al.  Off-diagonal Bethe ansatz and exact solution of a topological spin ring. , 2013, Physical review letters.

[23]  Foerster,et al.  Completeness of the Bethe states for the supersymmetric t-J model. , 1992, Physical review. B, Condensed matter.

[24]  J. van den Brink,et al.  Strongly Enhanced Superconductivity in Coupled t-J Segments. , 2015, Physical review letters.

[25]  Wen-Li Yang,et al.  Exact solution of the one-dimensional super-symmetric t–J model with unparallel boundary fields , 2013, 1312.0376.

[26]  Zhang,et al.  Effective Hamiltonian for the superconducting Cu oxides. , 1988, Physical review. B, Condensed matter.

[27]  Korepin,et al.  Higher conservation laws and algebraic Bethe Ansa-umltze for the supersymmetric t-J model. , 1992, Physical review. B, Condensed matter.