Open Science Discovery of Potent Non-Covalent SARS-CoV-2 Main Protease Inhibitors

The COVID-19 pandemic was a stark reminder that a barren global antiviral pipeline has grave humanitarian consequences. Pandemics could be prevented in principle by accessible, easily deployable broad-spectrum oral antivirals. Here we report the results of the COVID Moonshot, a fully open-science, crowd sourced, structure-enabled drug discovery campaign targeting the SARS-CoV-2 main protease. We discovered a novel chemical series that is differentiated from current Mpro inhibitors in that it maintains a new non-covalent, non-peptidic scaffold with nanomolar potency. Our approach leveraged crowdsourcing, high-throughput structural biology, machine learning, and exascale molecular simulations and high-throughput chemistry. In the process, we generated a detailed map of the structural plasticity of the SARS-CoV-2 main protease, extensive structure-activity relationships for multiple chemotypes, and a wealth of biochemical activity data. In a first for a structure-based drug discovery campaign, all compound designs (>18,000 designs), crystallographic data (>840 ligand-bound X-ray structures), assay data (>10,000 measurements), and synthesized molecules (>2,400 compounds) for this campaign were shared rapidly and openly, creating a rich open and IP-free knowledgebase for future anti-coronavirus drug discovery.

David D. L. Minh | Vincent A. Voelz | Matthew F. D. Hurley | Robert E. Arbon | Lauren C. Reid | J. Chodera | C. Eyermann | C. Schiffer | G. Morris | Alpha A Lee | O. Fedorov | K. Saikatendu | Ivy Zhang | H. Achdout | E. Salah | F. von Delft | G. Bowman | A. García-Sastre | Sukrit Singh | N. London | J. Spencer | N. Paran | R. Gabizon | Andrea Volkamer | G. Oliva | Lulu Kang | N. Zitzmann | J. Neyts | C. Schofield | A. Tumber | D. Alonzi | I. Vakonakis | S. Reid | P. Lukacik | T. Croll | M. Vaschetto | P. Miesen | R. V. van Rij | Finny S. Varghese | A. Godoy | K. White | A. Douangamath | S. Horrell | T. Krojer | N. Wright | L. Fraisse | R. Skyner | A. Jajack | A. Contini | K. D. Witt | M. J. Morwitzer | D. Moustakas | Jaime Rodríguez-Guerra | P. Kenny | A. Aimon | H. Barr | A. Ben-Shmuel | J. Brun | Mark Calmiano | A. Carbery | E. Cattermole | A. Clyde | J. Coffland | Galit Cohen | Lisa B. Cox | A. Dias | Shirly Duberstein | T. Dudgeon | L. Dunnett | N. Erez | M. Fairhead | D. Fearon | Holly Foster | Richard Foster | P. Gehrtz | C. Gileadi | W. Glass | I. Glinert | T. Gorrie-stone | E. Griffen | J. Heer | M. Hill | T. Israely | E. Jnoff | T. John | A. Kantsadi | J. L. Kiappes | L. Koekemoer | Boris Kovar | B. Lefker | H. B. Macdonald | T. R. Malla | Tatiana Matviiuk | Willam McCorkindale | S. Melamed | Oleg M. Michurin | H. Mikolajek | Aaron Morris | J. B. Neto | Vladas Oleinikovas | Gijs J. Overheul | D. Owen | R. Pai | Jin Pan | Ben Perry | M. Pingle | Jakir Pinjari | B. Politi | A. Powell | V. Psenak | V. Rangel | R. Reddi | E. Resnick | Matthew C. Robinson | R. Robinson | A. Shaikh | Khriesto A. Shurrush | Adam P Smalley | Mihaela D. Smilova | C. Strain-Damerell | H. Tamir | R. Tennant | Andrew Thompson | W. Thompson | S. Tomasio | Annette von Delft | M. Walsh | Walter Ward | Charlie Weatherall | C. Wild | Matthew Wittmann | Y. Yahalom-Ronen | Daniel Zaidmann | H. Zidane | K. Saar | C. Mowbray | D. Jochmans | B. Kaminow | Lori Ferrins | David Schaller | Kostiantyn P. Melnykov | A. M. Nakamura | R. Rosales | N. K. Yilmaz | J. Jansen | P. Boulet | Jenke Scheen | S. D. Jonghe | Kim Donckers | L. Vangeel | I. G. Logvinenko | M. Shafeev | G. D. Noske | V. Gawriljuk | R. Fernandes | Edcon Chang | B. Smeets | M. Filep | Alex Payne | L. Solmesky | Melissa L Boby | M. Gorichko | Charline Giroud | J. Bennett | Luong V. Nguyen | B. F. Milne | Vitaliy A. Bilenko | Jason Cole | Sophie Hahn | Ala M. Shaqra | Haim Levy | Shay Weiss | Elad Bar-David | Assa Sittner | Dominic A. Rufa | Mike Henry | M. Ferla | Briana L. McGovern | Reut Puni | Sarma Bvnbs | Milan Cvitkovic | David L. Dotson | Peter K. Eastman | R. Glen | Storm Hassell Hart | Emily Grace Ripka | Iván Pulido | Qiu Yu J. Huang | Sarah N Zvornicanin | Jenny Taylor | C. Tomlinson | Einat. B. Vitner | Bruce Borden | Lennart Brwewitz | Daniel Carney | E. Chernyshenko | Gwen Fate | Amna Haneef | Victor D. Huliak | Serhii O. Kinakh | Van La | Elizabeth Maclean | Laetitia L Makower | P. Rees | Jiye Shi | Peter Sjo | Vishwanath Swamy | Igor S. Tsurupa

[1]  T. Uehara,et al.  Efficacy and Safety of Ensitrelvir in Patients With Mild-to-Moderate Coronavirus Disease 2019: The Phase 2b Part of a Randomized, Placebo-Controlled, Phase 2/3 Study , 2022, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[2]  M. McCarthy Ensitrelvir as a potential treatment for COVID-19 , 2022, Expert opinion on pharmacotherapy.

[3]  N. London,et al.  Optimization of Covalent MKK7 Inhibitors via Crude Nanomole-Scale Libraries , 2022, Journal of medicinal chemistry.

[4]  T. Uehara,et al.  A Randomized Phase 2/3 Study of Ensitrelvir, a Novel Oral SARS-CoV-2 3C-Like Protease Inhibitor, in Japanese Patients with Mild-to-Moderate COVID-19 or Asymptomatic SARS-CoV-2 Infection: Results of the Phase 2a Part , 2022, medRxiv.

[5]  C. Deane,et al.  Fragment Libraries Designed to Be Functionally Diverse Recover Protein Binding Information More Efficiently Than Standard Structurally Diverse Libraries , 2022, bioRxiv.

[6]  M. Baniecki,et al.  Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19 , 2022, The New England journal of medicine.

[7]  H. van Bakel,et al.  Nirmatrelvir, Molnupiravir, and Remdesivir maintain potent in vitro activity against the SARS-CoV-2 Omicron variant , 2022, bioRxiv.

[8]  M. Rayment,et al.  Caution required with use of ritonavir-boosted PF-07321332 in COVID-19 management , 2021, The Lancet.

[9]  J. Butterton,et al.  Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients , 2021, The New England journal of medicine.

[10]  Ivan G. Costa,et al.  SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids , 2021, Cell Stem Cell.

[11]  J. Chodera,et al.  Why we are developing a patent-free Covid antiviral therapy , 2021, Knowable Magazine.

[12]  Alice Hooper,et al.  Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CLpro) , 2021, Journal of medicinal chemistry.

[13]  K. Gajiwala,et al.  An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19 , 2021, Science.

[14]  J. Chodera,et al.  A white-knuckle ride of open COVID drug discovery , 2021, Nature.

[15]  J. Chodera,et al.  Discovery of SARS-CoV-2 main protease inhibitors using a synthesis-directed de novo design model† , 2021, Chemical communications.

[16]  S. Cherry,et al.  Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors , 2021, Journal of medicinal chemistry.

[17]  David J. Fallon,et al.  A direct-to-biology high-throughput chemistry approach to reactive fragment screening , 2021, Chemical science.

[18]  Chenyu Sun,et al.  Warnings regarding the potential coronavirus disease 2019 (COVID-19) transmission risk: Vaccination is not enough , 2021, Infection Control & Hospital Epidemiology.

[19]  Nicky Phillips,et al.  The coronavirus is here to stay — here’s what that means , 2021, Nature.

[20]  P. Miesen,et al.  Berberine and Obatoclax Inhibit SARS-Cov-2 Replication in Primary Human Nasal Epithelial Cells In Vitro , 2020, bioRxiv.

[21]  F. von Delft,et al.  A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process , 2020, bioRxiv.

[22]  Zoe Cournia,et al.  Exploring Novel Directions in Free Energy Calculations , 2020, J. Chem. Inf. Model..

[23]  Michael R. Shirts,et al.  Development and Benchmarking of Open Force Field v1.0.0-the Parsley Small-Molecule Force Field. , 2020, Journal of chemical theory and computation.

[24]  F. von Delft,et al.  An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor , 2020, bioRxiv.

[25]  Zhi‐Bing Dong,et al.  A Review on the Latest Progress of Chan‐Lam Coupling Reaction , 2020 .

[26]  Michael R. Shirts,et al.  Best Practices for Alchemical Free Energy Calculations , 2020, 2008.03067.

[27]  Patrick B. Grinaway,et al.  Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning / molecular mechanics potentials , 2020, bioRxiv.

[28]  Christoph Nitsche,et al.  The SARS-CoV-2 main protease as drug target , 2020, Bioorganic & Medicinal Chemistry Letters.

[29]  Nir London,et al.  Crowdsourcing drug discovery for pandemics , 2020, Nature Chemistry.

[30]  James D. Firth,et al.  Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease , 2020, Nature Communications.

[31]  A. Joachimiak,et al.  Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography , 2020, Nature Communications.

[32]  Hualiang Jiang,et al.  Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors , 2020, Nature.

[33]  R. Hilgenfeld,et al.  Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors , 2020, Science.

[34]  Victor M Corman,et al.  Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[35]  B. L. de Groot,et al.  Large scale relative protein ligand binding affinities using non-equilibrium alchemy , 2019, Chemical science.

[36]  Christopher A. Hunter,et al.  Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction , 2018, ACS central science.

[37]  Alun W. Ashton,et al.  How best to use photons , 2019, Acta crystallographica. Section D, Structural biology.

[38]  G. F. Ruda,et al.  Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening , 2018, bioRxiv.

[39]  Patrice Koehl,et al.  Faculty Opinions recommendation of OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[40]  Christine L. Andrews,et al.  Nanoscale synthesis and affinity ranking , 2018, Nature.

[41]  Gwyndaf Evans,et al.  DIALS: implementation and evaluation of a new integration package , 2018, Acta crystallographica. Section D, Structural biology.

[42]  Paul Richardson,et al.  A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow , 2018, Science.

[43]  Robert Abel,et al.  A Critical Review of Validation, Blind Testing, and Real- World Use of Alchemical Protein-Ligand Binding Free Energy Calculations. , 2017, Current topics in medicinal chemistry.

[44]  Sebastian Kelm,et al.  A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density , 2017, Nature Communications.

[45]  Patrick Collins,et al.  The XChemExplorer graphical workflow tool for routine or large-scale protein–ligand structure determination , 2017, Acta crystallographica. Section D, Structural biology.

[46]  Saulius Gražulis,et al.  AceDRG: a stereochemical description generator for ligands , 2017, Acta crystallographica. Section D, Structural biology.

[47]  Vijay S. Pande,et al.  OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.

[48]  S. Djurić Faculty of 1000 evaluation for Twenty years on: the impact of fragments on drug discovery. , 2016 .

[49]  Harren Jhoti,et al.  Twenty years on: the impact of fragments on drug discovery , 2016, Nature Reviews Drug Discovery.

[50]  Jeffrey Strovel,et al.  Early Drug Discovery and Development Guidelines: For Academic Researchers, Collaborators, and Start-up Companies , 2016 .

[51]  D. Falzarano,et al.  SARS and MERS: recent insights into emerging coronaviruses , 2016, Nature Reviews Microbiology.

[52]  Y. Hayashi,et al.  An Overview of Severe Acute Respiratory Syndrome–Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy , 2016, Journal of medicinal chemistry.

[53]  Frank von Delft,et al.  A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc03115j , 2015, Chemical science.

[54]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[55]  Michael Schroeder,et al.  PLIP: fully automated protein–ligand interaction profiler , 2015, Nucleic Acids Res..

[56]  Kevin Bateman,et al.  Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.

[57]  Minjae Lee,et al.  RNA design rules from a massive open laboratory , 2014, Proceedings of the National Academy of Sciences.

[58]  Graeme Winter,et al.  Decision making in xia2 , 2013, Acta crystallographica. Section D, Biological crystallography.

[59]  J. Neyts,et al.  A novel method for high-throughput screening to quantify antiviral activity against viruses that induce limited CPE , 2012, Journal of Virological Methods.

[60]  Robin Taylor,et al.  Validating and Understanding Ring Conformations Using Small Molecule Crystallographic Data , 2012, J. Chem. Inf. Model..

[61]  Graeme Winter,et al.  Automated data collection for macromolecular crystallography. , 2011, Methods.

[62]  Clemens Vonrhein,et al.  Data processing and analysis with the autoPROC toolbox , 2011, Acta crystallographica. Section D, Biological crystallography.

[63]  Adrien Treuille,et al.  Predicting protein structures with a multiplayer online game , 2010, Nature.

[64]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[65]  Michael K. Gilson,et al.  Evaluating the Substrate-Envelope Hypothesis: Structural Analysis of Novel HIV-1 Protease Inhibitors Designed To Be Robust against Drug Resistance , 2010, Journal of Virology.

[66]  Wolfgang Kabsch,et al.  Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.

[67]  Jie Luo,et al.  Retrieval of Crystallographically-Derived Molecular Geometry Information , 2004, J. Chem. Inf. Model..

[68]  M. Congreve,et al.  Fragment-based lead discovery , 2004, Nature Reviews Drug Discovery.

[69]  Vijay S. Pande,et al.  Screen Savers of the World Unite! , 2000, Science.

[70]  A. Williamson Creating a structural genomics consortium , 2000, Nature Structural Biology.

[71]  G. Crooks Path-ensemble averages in systems driven far from equilibrium , 1999, cond-mat/9908420.

[72]  Charles H. Bennett,et al.  Efficient estimation of free energy differences from Monte Carlo data , 1976 .

[73]  E. Salah,et al.  Mass spectrometry reveals potential of b -lactams as SARS-CoV-2 M pro inhibitors † , 2021 .

[74]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[75]  Michael R. Shirts,et al.  COMPUTING: Screen Savers of the World Unite! , 2000, Science.