Open Science Discovery of Potent Non-Covalent SARS-CoV-2 Main Protease Inhibitors
暂无分享,去创建一个
David D. L. Minh | Vincent A. Voelz | Matthew F. D. Hurley | Robert E. Arbon | Lauren C. Reid | J. Chodera | C. Eyermann | C. Schiffer | G. Morris | Alpha A Lee | O. Fedorov | K. Saikatendu | Ivy Zhang | H. Achdout | E. Salah | F. von Delft | G. Bowman | A. García-Sastre | Sukrit Singh | N. London | J. Spencer | N. Paran | R. Gabizon | Andrea Volkamer | G. Oliva | Lulu Kang | N. Zitzmann | J. Neyts | C. Schofield | A. Tumber | D. Alonzi | I. Vakonakis | S. Reid | P. Lukacik | T. Croll | M. Vaschetto | P. Miesen | R. V. van Rij | Finny S. Varghese | A. Godoy | K. White | A. Douangamath | S. Horrell | T. Krojer | N. Wright | L. Fraisse | R. Skyner | A. Jajack | A. Contini | K. D. Witt | M. J. Morwitzer | D. Moustakas | Jaime Rodríguez-Guerra | P. Kenny | A. Aimon | H. Barr | A. Ben-Shmuel | J. Brun | Mark Calmiano | A. Carbery | E. Cattermole | A. Clyde | J. Coffland | Galit Cohen | Lisa B. Cox | A. Dias | Shirly Duberstein | T. Dudgeon | L. Dunnett | N. Erez | M. Fairhead | D. Fearon | Holly Foster | Richard Foster | P. Gehrtz | C. Gileadi | W. Glass | I. Glinert | T. Gorrie-stone | E. Griffen | J. Heer | M. Hill | T. Israely | E. Jnoff | T. John | A. Kantsadi | J. L. Kiappes | L. Koekemoer | Boris Kovar | B. Lefker | H. B. Macdonald | T. R. Malla | Tatiana Matviiuk | Willam McCorkindale | S. Melamed | Oleg M. Michurin | H. Mikolajek | Aaron Morris | J. B. Neto | Vladas Oleinikovas | Gijs J. Overheul | D. Owen | R. Pai | Jin Pan | Ben Perry | M. Pingle | Jakir Pinjari | B. Politi | A. Powell | V. Psenak | V. Rangel | R. Reddi | E. Resnick | Matthew C. Robinson | R. Robinson | A. Shaikh | Khriesto A. Shurrush | Adam P Smalley | Mihaela D. Smilova | C. Strain-Damerell | H. Tamir | R. Tennant | Andrew Thompson | W. Thompson | S. Tomasio | Annette von Delft | M. Walsh | Walter Ward | Charlie Weatherall | C. Wild | Matthew Wittmann | Y. Yahalom-Ronen | Daniel Zaidmann | H. Zidane | K. Saar | C. Mowbray | D. Jochmans | B. Kaminow | Lori Ferrins | David Schaller | Kostiantyn P. Melnykov | A. M. Nakamura | R. Rosales | N. K. Yilmaz | J. Jansen | P. Boulet | Jenke Scheen | S. D. Jonghe | Kim Donckers | L. Vangeel | I. G. Logvinenko | M. Shafeev | G. D. Noske | V. Gawriljuk | R. Fernandes | Edcon Chang | B. Smeets | M. Filep | Alex Payne | L. Solmesky | Melissa L Boby | M. Gorichko | Charline Giroud | J. Bennett | Luong V. Nguyen | B. F. Milne | Vitaliy A. Bilenko | Jason Cole | Sophie Hahn | Ala M. Shaqra | Haim Levy | Shay Weiss | Elad Bar-David | Assa Sittner | Dominic A. Rufa | Mike Henry | M. Ferla | Briana L. McGovern | Reut Puni | Sarma Bvnbs | Milan Cvitkovic | David L. Dotson | Peter K. Eastman | R. Glen | Storm Hassell Hart | Emily Grace Ripka | Iván Pulido | Qiu Yu J. Huang | Sarah N Zvornicanin | Jenny Taylor | C. Tomlinson | Einat. B. Vitner | Bruce Borden | Lennart Brwewitz | Daniel Carney | E. Chernyshenko | Gwen Fate | Amna Haneef | Victor D. Huliak | Serhii O. Kinakh | Van La | Elizabeth Maclean | Laetitia L Makower | P. Rees | Jiye Shi | Peter Sjo | Vishwanath Swamy | Igor S. Tsurupa
[1] T. Uehara,et al. Efficacy and Safety of Ensitrelvir in Patients With Mild-to-Moderate Coronavirus Disease 2019: The Phase 2b Part of a Randomized, Placebo-Controlled, Phase 2/3 Study , 2022, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
[2] M. McCarthy. Ensitrelvir as a potential treatment for COVID-19 , 2022, Expert opinion on pharmacotherapy.
[3] N. London,et al. Optimization of Covalent MKK7 Inhibitors via Crude Nanomole-Scale Libraries , 2022, Journal of medicinal chemistry.
[4] T. Uehara,et al. A Randomized Phase 2/3 Study of Ensitrelvir, a Novel Oral SARS-CoV-2 3C-Like Protease Inhibitor, in Japanese Patients with Mild-to-Moderate COVID-19 or Asymptomatic SARS-CoV-2 Infection: Results of the Phase 2a Part , 2022, medRxiv.
[5] C. Deane,et al. Fragment Libraries Designed to Be Functionally Diverse Recover Protein Binding Information More Efficiently Than Standard Structurally Diverse Libraries , 2022, bioRxiv.
[6] M. Baniecki,et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with Covid-19 , 2022, The New England journal of medicine.
[7] H. van Bakel,et al. Nirmatrelvir, Molnupiravir, and Remdesivir maintain potent in vitro activity against the SARS-CoV-2 Omicron variant , 2022, bioRxiv.
[8] M. Rayment,et al. Caution required with use of ritonavir-boosted PF-07321332 in COVID-19 management , 2021, The Lancet.
[9] J. Butterton,et al. Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients , 2021, The New England journal of medicine.
[10] Ivan G. Costa,et al. SARS-CoV-2 infects the human kidney and drives fibrosis in kidney organoids , 2021, Cell Stem Cell.
[11] J. Chodera,et al. Why we are developing a patent-free Covid antiviral therapy , 2021, Knowable Magazine.
[12] Alice Hooper,et al. Structure-Based Optimization of ML300-Derived, Noncovalent Inhibitors Targeting the Severe Acute Respiratory Syndrome Coronavirus 3CL Protease (SARS-CoV-2 3CLpro) , 2021, Journal of medicinal chemistry.
[13] K. Gajiwala,et al. An oral SARS-CoV-2 Mpro inhibitor clinical candidate for the treatment of COVID-19 , 2021, Science.
[14] J. Chodera,et al. A white-knuckle ride of open COVID drug discovery , 2021, Nature.
[15] J. Chodera,et al. Discovery of SARS-CoV-2 main protease inhibitors using a synthesis-directed de novo design model† , 2021, Chemical communications.
[16] S. Cherry,et al. Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors , 2021, Journal of medicinal chemistry.
[17] David J. Fallon,et al. A direct-to-biology high-throughput chemistry approach to reactive fragment screening , 2021, Chemical science.
[18] Chenyu Sun,et al. Warnings regarding the potential coronavirus disease 2019 (COVID-19) transmission risk: Vaccination is not enough , 2021, Infection Control & Hospital Epidemiology.
[19] Nicky Phillips,et al. The coronavirus is here to stay — here’s what that means , 2021, Nature.
[20] P. Miesen,et al. Berberine and Obatoclax Inhibit SARS-Cov-2 Replication in Primary Human Nasal Epithelial Cells In Vitro , 2020, bioRxiv.
[21] F. von Delft,et al. A Crystallographic Snapshot of SARS-CoV-2 Main Protease Maturation Process , 2020, bioRxiv.
[22] Zoe Cournia,et al. Exploring Novel Directions in Free Energy Calculations , 2020, J. Chem. Inf. Model..
[23] Michael R. Shirts,et al. Development and Benchmarking of Open Force Field v1.0.0-the Parsley Small-Molecule Force Field. , 2020, Journal of chemical theory and computation.
[24] F. von Delft,et al. An automatic pipeline for the design of irreversible derivatives identifies a potent SARS-CoV-2 Mpro inhibitor , 2020, bioRxiv.
[25] Zhi‐Bing Dong,et al. A Review on the Latest Progress of Chan‐Lam Coupling Reaction , 2020 .
[26] Michael R. Shirts,et al. Best Practices for Alchemical Free Energy Calculations , 2020, 2008.03067.
[27] Patrick B. Grinaway,et al. Towards chemical accuracy for alchemical free energy calculations with hybrid physics-based machine learning / molecular mechanics potentials , 2020, bioRxiv.
[28] Christoph Nitsche,et al. The SARS-CoV-2 main protease as drug target , 2020, Bioorganic & Medicinal Chemistry Letters.
[29] Nir London,et al. Crowdsourcing drug discovery for pandemics , 2020, Nature Chemistry.
[30] James D. Firth,et al. Crystallographic and electrophilic fragment screening of the SARS-CoV-2 main protease , 2020, Nature Communications.
[31] A. Joachimiak,et al. Structural plasticity of SARS-CoV-2 3CL Mpro active site cavity revealed by room temperature X-ray crystallography , 2020, Nature Communications.
[32] Hualiang Jiang,et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors , 2020, Nature.
[33] R. Hilgenfeld,et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved α-ketoamide inhibitors , 2020, Science.
[34] Victor M Corman,et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR , 2020, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.
[35] B. L. de Groot,et al. Large scale relative protein ligand binding affinities using non-equilibrium alchemy , 2019, Chemical science.
[36] Christopher A. Hunter,et al. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction , 2018, ACS central science.
[37] Alun W. Ashton,et al. How best to use photons , 2019, Acta crystallographica. Section D, Structural biology.
[38] G. F. Ruda,et al. Rapid Covalent-Probe Discovery by Electrophile-Fragment Screening , 2018, bioRxiv.
[39] Patrice Koehl,et al. Faculty Opinions recommendation of OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.
[40] Christine L. Andrews,et al. Nanoscale synthesis and affinity ranking , 2018, Nature.
[41] Gwyndaf Evans,et al. DIALS: implementation and evaluation of a new integration package , 2018, Acta crystallographica. Section D, Structural biology.
[42] Paul Richardson,et al. A platform for automated nanomole-scale reaction screening and micromole-scale synthesis in flow , 2018, Science.
[43] Robert Abel,et al. A Critical Review of Validation, Blind Testing, and Real- World Use of Alchemical Protein-Ligand Binding Free Energy Calculations. , 2017, Current topics in medicinal chemistry.
[44] Sebastian Kelm,et al. A multi-crystal method for extracting obscured crystallographic states from conventionally uninterpretable electron density , 2017, Nature Communications.
[45] Patrick Collins,et al. The XChemExplorer graphical workflow tool for routine or large-scale protein–ligand structure determination , 2017, Acta crystallographica. Section D, Structural biology.
[46] Saulius Gražulis,et al. AceDRG: a stereochemical description generator for ligands , 2017, Acta crystallographica. Section D, Structural biology.
[47] Vijay S. Pande,et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics , 2016, bioRxiv.
[48] S. Djurić. Faculty of 1000 evaluation for Twenty years on: the impact of fragments on drug discovery. , 2016 .
[49] Harren Jhoti,et al. Twenty years on: the impact of fragments on drug discovery , 2016, Nature Reviews Drug Discovery.
[50] Jeffrey Strovel,et al. Early Drug Discovery and Development Guidelines: For Academic Researchers, Collaborators, and Start-up Companies , 2016 .
[51] D. Falzarano,et al. SARS and MERS: recent insights into emerging coronaviruses , 2016, Nature Reviews Microbiology.
[52] Y. Hayashi,et al. An Overview of Severe Acute Respiratory Syndrome–Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy , 2016, Journal of medicinal chemistry.
[53] Frank von Delft,et al. A poised fragment library enables rapid synthetic expansion yielding the first reported inhibitors of PHIP(2), an atypical bromodomain† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc03115j , 2015, Chemical science.
[54] C. Simmerling,et al. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.
[55] Michael Schroeder,et al. PLIP: fully automated protein–ligand interaction profiler , 2015, Nucleic Acids Res..
[56] Kevin Bateman,et al. Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.
[57] Minjae Lee,et al. RNA design rules from a massive open laboratory , 2014, Proceedings of the National Academy of Sciences.
[58] Graeme Winter,et al. Decision making in xia2 , 2013, Acta crystallographica. Section D, Biological crystallography.
[59] J. Neyts,et al. A novel method for high-throughput screening to quantify antiviral activity against viruses that induce limited CPE , 2012, Journal of Virological Methods.
[60] Robin Taylor,et al. Validating and Understanding Ring Conformations Using Small Molecule Crystallographic Data , 2012, J. Chem. Inf. Model..
[61] Graeme Winter,et al. Automated data collection for macromolecular crystallography. , 2011, Methods.
[62] Clemens Vonrhein,et al. Data processing and analysis with the autoPROC toolbox , 2011, Acta crystallographica. Section D, Biological crystallography.
[63] Adrien Treuille,et al. Predicting protein structures with a multiplayer online game , 2010, Nature.
[64] P. Emsley,et al. Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.
[65] Michael K. Gilson,et al. Evaluating the Substrate-Envelope Hypothesis: Structural Analysis of Novel HIV-1 Protease Inhibitors Designed To Be Robust against Drug Resistance , 2010, Journal of Virology.
[66] Wolfgang Kabsch,et al. Integration, scaling, space-group assignment and post-refinement , 2010, Acta crystallographica. Section D, Biological crystallography.
[67] Jie Luo,et al. Retrieval of Crystallographically-Derived Molecular Geometry Information , 2004, J. Chem. Inf. Model..
[68] M. Congreve,et al. Fragment-based lead discovery , 2004, Nature Reviews Drug Discovery.
[69] Vijay S. Pande,et al. Screen Savers of the World Unite! , 2000, Science.
[70] A. Williamson. Creating a structural genomics consortium , 2000, Nature Structural Biology.
[71] G. Crooks. Path-ensemble averages in systems driven far from equilibrium , 1999, cond-mat/9908420.
[72] Charles H. Bennett,et al. Efficient estimation of free energy differences from Monte Carlo data , 1976 .
[73] E. Salah,et al. Mass spectrometry reveals potential of b -lactams as SARS-CoV-2 M pro inhibitors † , 2021 .
[74] International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome , 2001, Nature.
[75] Michael R. Shirts,et al. COMPUTING: Screen Savers of the World Unite! , 2000, Science.