An Asp—Asn substitution in the proteolipid subnit of the ATP‐synthase from Escherichia coli leads to a non‐functional proton channel

[1]  W. Sebald,et al.  Amino acid sequence of the proteolipid subunit of the ATP synthase from spinach chloroplasts , 1980 .

[2]  W. Sebald,et al.  Identification of amino-acid substitutions in the proteolipid subunit of the ATP synthase from dicyclohexylcarbodiimide-resistant mutants of Escherichia coli. , 1980, European journal of biochemistry.

[3]  P. Friedl,et al.  F0 of Escherichia coli ATP‐synthase containing mutant and wild‐type carbodiimide‐binding proteins is impaired in H+‐conduction , 1980, FEBS letters.

[4]  W. Sebald,et al.  Amino acid sequence of the proteolipid subunit of the proton-translocating ATPase complex from the thermophilic bacterium PS-3. , 1980, European journal of biochemistry.

[5]  W. Sebald,et al.  N,N'-dicyclohexylcarbodiimide binds specifically to a single glutamyl residue of the proteolipid subunit of the mitochondrial adenosinetriphosphatases from Neurospora crassa and Saccharomyces cerevisiae. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[6]  P. Friedl,et al.  The ATP synthetase of Escherichia coli K12: purification of the enzyme and reconstitution of energy-transducing activities. , 1979, European journal of biochemistry.

[7]  R. H. Fillingame,et al.  Energy-transducing H+-ATPase of Escherichia coli. Purification, reconstitution, and subunit composition. , 1979, The Journal of biological chemistry.

[8]  U. Pick,et al.  Purification and reconstitution of the N,N'-dicyclohexylcarbodiimide-sensitive ATPase complex from spinach chloroplasts. , 1979, The Journal of biological chemistry.

[9]  T. Graf,et al.  The dicyclohexylcarbodiimide-binding protein of the mitochondrial ATPase complex from Neurospora crassa and Saccharomyces cerevisiae. Identification and isolation. , 1979, European journal of biochemistry.

[10]  Y. Kagawa Reconstitution of the energy transformer, gate and channel subunit reassembly, crystalline ATPase and ATP synthesis. , 1978, Biochimica et biophysica acta.

[11]  Y. Kagawa,et al.  Resolution of the membrane moiety of the H+-ATPase complex into two kinds of subunits. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. H. Fillingame Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system of Escherichia coli. , 1976, The Journal of biological chemistry.

[13]  P. Friedl,et al.  The use of several energy-coupling reactions in characterizing mutants of Escherichia coli K12 defective in oxidative phosphorylation. , 1976, European journal of biochemistry.

[14]  K. J. Cattell,et al.  The identification of the site of action of dicyclohexylcarbodi-imide as a proteolipid in mitochondrialmembranes. , 1971, The Biochemical journal.

[15]  V. Skulachev,et al.  Chemiosmotic proton circuits in biological membranes , 1981 .

[16]  W. Sebald,et al.  The proteolipid of a mutant ATPase from Escherichia coli defective in H+‐conduction contains a glycine instead of the carbodiimide‐reactive aspartyl residue , 1980, FEBS letters.

[17]  G. Cox,et al.  Membrane adenosine triphosphatases of prokaryotic cells. , 1979, Annual review of biochemistry.