Cone avoidance and randomness preservation

Abstract Let X be an infinite sequence of 0's and 1's. Let f be a computable function. Recall that X is strongly f-random if and only if the a priori Kolmogorov complexity of each finite initial segment τ of X is bounded below by f ( τ ) minus a constant. We study the problem of finding a PA-complete Turing oracle which preserves the strong f-randomness of X while avoiding a Turing cone. In the context of this problem, we prove that the cones which cannot always be avoided are precisely the K-trivial ones. We also prove: (1) If f is convex and X is strongly f-random and Y is Martin-Lof random relative to X, then X is strongly f-random relative to Y. (2) X is complex relative to some oracle if and only if X is random with respect to some continuous probability measure.

[1]  S. G. Simpson MASS PROBLEMS ASSOCIATED WITH EFFECTIVELY CLOSED SETS , 2011 .

[2]  Stephen G. Simpson Mass problems and randomness , 2005, Bull. Symb. Log..

[3]  Stephen G. Simpson,et al.  Subsystems of second order arithmetic , 1999, Perspectives in mathematical logic.

[4]  F. J. Pelletier,et al.  316 Notre Dame Journal of Formal Logic , 1982 .

[5]  R. Soare,et al.  Π⁰₁ classes and degrees of theories , 1972 .

[6]  Denis R. Hirschfeldt,et al.  Algorithmic randomness and complexity. Theory and Applications of Computability , 2012 .

[7]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[8]  Jan Reimann,et al.  Independence, Relative Randomness, and PA Degrees , 2014, Notre Dame J. Formal Log..

[9]  André Nies,et al.  Randomness and Differentiability , 2011, ArXiv.

[10]  Jan Reimann,et al.  Effectively closed sets of measures and randomness , 2008, Ann. Pure Appl. Log..

[11]  Adam R. Day,et al.  Randomness for non-computable measures , 2013 .

[12]  D. Scott Algebras of sets binumerable in complete extensions of arithmetic , 1962 .

[13]  Péter Gács,et al.  Uniform test of algorithmic randomness over a general space , 2003, Theor. Comput. Sci..

[14]  ROBERT IRVING SOARE,et al.  DEGREES OF MEMBERS OF Π\ CLASSES , 2012 .

[15]  Robert W. Robinson,et al.  Degrees joining to 0′ , 1981, Journal of Symbolic Logic.

[16]  J. Dekker,et al.  Recursive function theory , 1962 .

[17]  Stephen G. Simpson Mass problems and measure-theoretic regularity , 2009, Bull. Symb. Log..

[18]  Alexander Shen,et al.  Relations between varieties of kolmogorov complexities , 1996 .

[19]  Rodney G. Downey,et al.  Algorithmic Randomness and Complexity , 2010, Theory and Applications of Computability.

[20]  Cristian S. Calude,et al.  On partial randomness , 2006, Ann. Pure Appl. Log..

[21]  André Nies,et al.  Relativizing Chaitin's Halting Probability , 2005, J. Math. Log..

[22]  Peter A. Cholak Review: Stephen G. Simpson, Subsystems of Second Order Arithmetic , 1999, Journal of Symbolic Logic.

[23]  Joseph S. Miller,et al.  Degrees of unsolvability of continuous functions , 2004, Journal of Symbolic Logic.

[24]  A. Nies Lowness properties and randomness , 2005 .

[25]  Kojiro Higuchi,et al.  Propagation of partial randomness , 2014, Ann. Pure Appl. Log..

[26]  R. Soare Recursively enumerable sets and degrees , 1987 .

[27]  A. Nies Computability and randomness , 2009 .

[28]  Stephen G. Simpson,et al.  A Nonstandard Counterpart of WWKL , 2011, Notre Dame J. Formal Log..

[29]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[30]  George Barmpalias,et al.  Chaitin's halting probability and the compression of strings using oracles , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[31]  Stephen G. Simpson,et al.  Π 01 Sets and Models of WKL 0 , 2000 .

[32]  Richard Kaye Models of Peano arithmetic , 1991, Oxford logic guides.

[33]  Gregory J. Chaitin Information-Theoretic Characterizations of Recursive Infinite Strings , 1976, Theor. Comput. Sci..

[34]  Robert I. Soare Fundamentals of Recursively Enumerable Sets and the Recursion Theorem , 1987 .

[35]  Jan Reimann,et al.  Measures and Their Random Reals , 2008 .

[36]  Joseph S. Miller,et al.  The K-Degrees, Low for K Degrees, and Weakly Low for K Sets , 2009, Notre Dame J. Formal Log..

[37]  Liang Yu,et al.  On initial segment complexity and degrees of randomness , 2008 .

[38]  Stephen G. Simpson,et al.  Almost everywhere domination and superhighness , 2007, Math. Log. Q..

[39]  Robert I. Soare,et al.  Degrees of members of Π10 classes , 1972 .