Theoretical z -pinch scaling relations for thermonuclear-fusion experiments.
暂无分享,去创建一个
J. J. Ramirez | J J Ramirez | G. Chandler | M. Cuneo | J. Porter | W. Stygar | R. Vesey | E. Waisman | M. Mazarakis | J. Mckenney | M. Matzen | R. Spielman | C. Olson | R. Leeper | C. Speas | H. Ives | D. Mcdaniel | J. F. Seamen | K. Struve | J. Torres | J. McGurn | T. Gilliland | D. Fehl | T. Wagoner | R J Leeper | M E Cuneo | J L Porter | R A Vesey | W A Stygar | H C Ives | M G Mazarakis | G A Chandler | D L Fehl | M K Matzen | D H McDaniel | J S McGurn | J L McKenney | D J Muron | C L Olson | J F Seamen | C S Speas | R B Spielman | K W Struve | J A Torres | E M Waisman | T C Wagoner | T L Gilliland | D. Muron
[1] R. G. Adams,et al. Demonstration of radiation symmetry control for inertial confinement fusion in double Z-pinch hohlraums. , 2003, Physical review letters.
[2] John M. Creedon,et al. Magnetic cutoff in high‐current diodes , 1977 .
[3] Computational investigation of single mode vs multimode Rayleigh–Taylor seeding in Z-pinch implosions , 1997 .
[4] S. Wilks,et al. Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories , 1998 .
[5] T. Nash,et al. Systematic trends in x-ray emission characteristics of variable-wire-number, fixed-mass, aluminum-array, Z-pinch implosions , 1999 .
[6] Gordon Andrew Chandler,et al. Development and Characterization of a Z-Pinch Driven Hohlraum High-Yield Inertial Confinement Fusion Target Concept , 2001 .
[7] G. M. Oleinik,et al. Prolonged plasma production at current-driven implosion of wire arrays on Angara-5-1 facility , 2002 .
[8] R. Bowers,et al. Characterization of energy flow and instability development in two-dimensional simulations of hollow z pinches , 1998 .
[9] R. G. Adams,et al. Radiation symmetry control for inertial confinement fusion capsule implosions in double Z-pinch hohlraums on Z , 2003 .
[10] R. G. Adams,et al. Symmetric inertial confinement fusion capsule implosions in a high-yield-scale double-Z-pinch-driven hohlraum on Z , 2003 .
[11] Norman Rostoker,et al. Equilibria for Magnetic Insulation , 1973 .
[12] J. J. Ramirez,et al. X-ray emission from z pinches at 10 7 A: current scaling, gap closure, and shot-to-shot fluctuations. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[13] D. S. Bailey,et al. High yield inertial confinement fusion target design for a z-pinch-driven hohlraum , 1999 .
[14] L. P. Mix,et al. Obtaining absolute spatial flux measurements with a time-resolved pinhole camera , 1999 .
[15] G. O. Allshouse,et al. Numerical simulations of annular wire-array z-pinches in (x,y), (r,θ), and (r,z) geometries , 1998 .
[16] J. Porter,et al. Power enhancement by increasing the initial array radius and wire number of tungsten Z pinches , 1997 .
[17] J. A. Lott,et al. Flashover of a vacuum-insulator interface: A statistical model , 2004 .
[18] Farhat Beg,et al. One-, two-, and three-dimensional modeling of the different phases of wire array Z-pinch evolution , 2001 .
[19] G. R. Bennett,et al. Double Z-pinch hohlraum drive with excellent temperature balance for symmetric inertial confinement fusion capsule implosions. , 2002, Physical review letters.
[20] G. Chandler,et al. Radiation science using Z-pinch x rays , 2002 .
[21] Mosher,et al. Improved Symmetry Greatly Increases X-Ray Power from Wire-Array Z-Pinches. , 1996, Physical review letters.
[22] G. M. Oleinik,et al. Polarity effect for exploding wires in a vacuum. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] G. Chandler,et al. Optimization of power density by decreasing the length of tungsten wire array Z pinches , 1998 .
[24] D. Bliss,et al. Mass-profile and instability-growth measurements for 300-wire Z-pinch implosions driven by 14-18 MA. , 2004, Physical review letters.
[25] Gordon Andrew Chandler,et al. Measurement of radiation symmetry in Z-pinch-driven hohlraums , 2001 .
[26] A. R. Mingaleev,et al. Density measurements in exploding wire-initiated plasmas using tungsten wires , 1999 .
[27] R. Spielman,et al. Two‐dimensional radiation‐magnetohydrodynamic simulations of SATURN imploding Z pinches , 1996 .
[28] J. Chittenden,et al. Plasma Formation and Implosion Structure in Wire Array Z Pinches , 1999 .
[29] G. O. Allshouse,et al. Wire number doubling in high-wire-number regime increases Z-accelerator X-ray power , 1998 .
[30] O. Landen,et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility , 2004 .
[31] S. E. Rosenthal,et al. A simple theory of magnetic insulation from basic physical considerations , 1983 .
[32] W. Stygar,et al. Analytic models of high-temperature hohlraums. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[33] McCall,et al. Fiber ablation in the solid deuterium Z pinch. , 1989, Physical review letters.
[34] D. Ryutov,et al. The physics of fast Z pinches , 1998 .
[35] Characterization of diagnostic hole-closure in Z-pinch driven hohlraums , 2000 .
[36] J. Porter,et al. X-ray spectral power measurements utilizing the diffraction pattern of a slit , 1999 .
[37] J. M. Foster,et al. SUPERSONIC JET AND SHOCK INTERACTIONS , 2001 .
[38] Mordecai D. Rosen,et al. The science applications of the high-energy density plasmas created on the Nova laser , 1996 .
[39] M. Basko,et al. IGNITION ENERGY SCALING OF INERTIAL CONFINEMENT FUSION TARGETS , 1998 .
[40] G. Chandler,et al. Tungsten wire-array Z-pinch experiments at 200 TW and 2 MJ , 1998 .
[41] G. M. Oleinik,et al. Dynamics of Heterogeneous Liners with Prolonged Plasma Creation , 2001 .
[42] C. Coverdale,et al. Optimal wire-number range for high x-ray power in long-implosion-time aluminum Z pinches. , 2002, Physical review letters.
[43] Implosion dynamics of long-pulse wire array Z pinches , 2000 .
[44] R. Bowers,et al. Two‐dimensional modeling of magnetically driven Rayleigh–Taylor instabilities in cylindrical Z pinches , 1996 .
[45] K. H. Kwek,et al. Effect of discrete wires on the implosion dynamics of wire array Z pinches , 2001 .
[46] M. Cuneo,et al. Equilibrium flow structures and scaling of implosion trajectories in wire array Z pinches , 2004 .
[47] R. G. Adams,et al. Symmetric inertial-confinement-fusion-capsule implosions in a double-z-pinch-driven hohlraum. , 2002, Physical review letters.
[48] E. Yadlowsky,et al. Evidence for precursor plasma formation resulting from heterogeneous current channels in wire array loads , 1996 .
[49] M. Cuneo,et al. Zero-dimensional energetics scaling models for z-pinch-driven hohlraums , 2001 .
[50] Gordon Andrew Chandler,et al. Soft x-ray measurements of z-pinch-driven vacuum hohlraums , 1999 .
[51] Bell,et al. Plasma formation in metallic wire Z pinches , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[52] G. R. Bennett,et al. Characteristics and scaling of tungsten-wire-array z -pinch implosion dynamics at 20 MA. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[53] R. Lemke,et al. Wire array implosion characteristics from determination of load inductance on the Z pulsed-power accelerator , 2004 .
[54] D. Youngs,et al. Numerical simulation of turbulent mixing by Rayleigh-Taylor instability , 1984 .
[55] R. Olson. Target Physics Scaling for Z-Pinch Inertial Fusion Energy , 2005 .
[56] Haines,et al. Effect of core-corona plasma structure on seeding of instabilities in wire array Z pinches , 2000, Physical review letters.
[57] D. Youngs,et al. Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability , 1991 .
[58] B. M. Marder,et al. Theory of Wire Number Scaling in Wire-Array Z Pinches , 1999 .
[59] John Lindl,et al. Ignition scaling laws and their application to capsule design , 2000 .