Fermionic realisations of simple Lie algebras and their invariant fermionic operators

[1]  B. Kostant A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups , 1999 .

[2]  L. Brink,et al.  Dirac equations, light cone supersymmetry, and superconformal algebras , 1999, hep-th/9908208.

[3]  N. Mackay Local conserved charges in principal chiral models , 1999, hep-th/9902008.

[4]  J. A. Azcárraga,et al.  Effective actions, relative cohomology and Chern-Simons forms , 1997, hep-th/9711064.

[5]  J. A. Azcárraga,et al.  INVARIANT TENSORS FOR SIMPLE GROUPS , 1997, physics/9706006.

[6]  P. Bouwknegt Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics , 1996 .

[7]  A. Macfarlane,et al.  Hidden supersymmetries of particle motion in a Wu-Yang monopole field , 1996 .

[8]  K. Peeters,et al.  New supersymmetry of the monopole , 1995, hep-th/9507046.

[9]  E. D'hoker,et al.  Invariant effective actions, cohomology of homogeneous spaces and anomalies , 1995, hep-th/9502162.

[10]  Masayuki Tanimoto The role of Killing-Yano tensors in supersymmetric mechanics on a curved manifold , 1995, gr-qc/9501006.

[11]  Weinberg,et al.  General effective actions. , 1994, Physical review. D, Particles and fields.

[12]  K. Schoutens,et al.  W symmetry in conformal field theory , 1992, hep-th/9210010.

[13]  S. Majid,et al.  Quantum group structure in a fermionic extension of the quantum harmonic oscillator , 1991 .

[14]  J. M. Izquierdo,et al.  Current algebra and Wess-Zumino terms: a unified geometric treatment , 1990 .

[15]  J. Gracey,et al.  Anomalous Current Algebras in the Skyrme Model or Chiral $G$ X $G$ With {Wess-Zumino} Term , 1987 .

[16]  Sam B. Treiman,et al.  Current Algebra and Anomalies , 1985 .

[17]  L. Faddeev,et al.  Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies , 1984 .

[18]  R. Slansky Group theory for unified model building , 1981 .

[19]  S. Iwao,et al.  Meson mass formula in broken SUN symmetry and its applications , 1976 .

[20]  J. Martin The Feynman principle for a Fermi system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[21]  J. L. Martin,et al.  Generalized classical dynamics, and the ‘classical analogue’ of a Fermioscillator , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.