Fermionic realisations of simple Lie algebras and their invariant fermionic operators
暂无分享,去创建一个
[1] B. Kostant. A cubic Dirac operator and the emergence of Euler number multiplets of representations for equal rank subgroups , 1999 .
[2] L. Brink,et al. Dirac equations, light cone supersymmetry, and superconformal algebras , 1999, hep-th/9908208.
[3] N. Mackay. Local conserved charges in principal chiral models , 1999, hep-th/9902008.
[4] J. A. Azcárraga,et al. Effective actions, relative cohomology and Chern-Simons forms , 1997, hep-th/9711064.
[5] J. A. Azcárraga,et al. INVARIANT TENSORS FOR SIMPLE GROUPS , 1997, physics/9706006.
[6] P. Bouwknegt. Lie Groups, Lie Algebras, Cohomology and Some Applications in Physics , 1996 .
[7] A. Macfarlane,et al. Hidden supersymmetries of particle motion in a Wu-Yang monopole field , 1996 .
[8] K. Peeters,et al. New supersymmetry of the monopole , 1995, hep-th/9507046.
[9] E. D'hoker,et al. Invariant effective actions, cohomology of homogeneous spaces and anomalies , 1995, hep-th/9502162.
[10] Masayuki Tanimoto. The role of Killing-Yano tensors in supersymmetric mechanics on a curved manifold , 1995, gr-qc/9501006.
[11] Weinberg,et al. General effective actions. , 1994, Physical review. D, Particles and fields.
[12] K. Schoutens,et al. W symmetry in conformal field theory , 1992, hep-th/9210010.
[13] S. Majid,et al. Quantum group structure in a fermionic extension of the quantum harmonic oscillator , 1991 .
[14] J. M. Izquierdo,et al. Current algebra and Wess-Zumino terms: a unified geometric treatment , 1990 .
[15] J. Gracey,et al. Anomalous Current Algebras in the Skyrme Model or Chiral $G$ X $G$ With {Wess-Zumino} Term , 1987 .
[16] Sam B. Treiman,et al. Current Algebra and Anomalies , 1985 .
[17] L. Faddeev,et al. Algebraic and Hamiltonian methods in the theory of non-Abelian anomalies , 1984 .
[18] R. Slansky. Group theory for unified model building , 1981 .
[19] S. Iwao,et al. Meson mass formula in broken SUN symmetry and its applications , 1976 .
[20] J. Martin. The Feynman principle for a Fermi system , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[21] J. L. Martin,et al. Generalized classical dynamics, and the ‘classical analogue’ of a Fermioscillator , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.