Photoluminescence Temperature Dependence, Dynamics, and Quantum Efficiencies in Mn2+-Doped CsPbCl3 Perovskite Nanocrystals with Varied Dopant Concentration

A series of Mn2+-doped CsPbCl3 nanocrystals (NCs) was synthesized using reaction temperature and precursor concentration to tune Mn2+ concentrations up to 14%, and then studied using variable-temperature photoluminescence (PL) spectroscopy. All doped NCs show Mn2+ 4T1g → 6A1g d–d luminescence within the optical gap coexisting with excitonic luminescence at the NC absorption edge. Room-temperature Mn2+ PL quantum yields increase with increased doping, reaching ∼60% at ∼3 ± 1% Mn2+ before decreasing at higher concentrations. The low-doping regime is characterized by single-exponential PL decay with a concentration-independent lifetime of 1.8 ms, reflecting efficient luminescence of isolated Mn2+. At elevated doping, the decay is shorter, multiexponential, and concentration-dependent, reflecting the introduction of Mn2+–Mn2+ dimers and energy migration to traps. A large, anomalous decrease in Mn2+ PL intensity is observed with decreasing temperature, stemming from the strongly temperature-dependent exciton l...

[1]  Yitong Dong,et al.  Dynamics of Exciton–Mn Energy Transfer in Mn-Doped CsPbCl3 Perovskite Nanocrystals , 2017 .

[2]  Jinju Zheng,et al.  Efficient Photoluminescence of Mn2+ Ions in MnS/ZnS Core/Shell Quantum Dots , 2009 .

[3]  D. Gamelin,et al.  Nanocrystal diffusion doping. , 2013, Journal of the American Chemical Society.

[4]  Jinju Zheng,et al.  Long-lived and Well-resolved Mn2+ Ion Emissions in CuInS-ZnS Quantum Dots , 2014, Scientific Reports.

[5]  Ming Yan,et al.  Doped Semiconductor-Nanocrystal Emitters with Optimal Photoluminescence Decay Dynamics in Microsecond to Millisecond Range: Synthesis and Applications , 2015, ACS central science.

[6]  D. Gamelin,et al.  Activation of high-T(C) ferromagnetism in Mn2+-doped ZnO using amines. , 2005, Journal of the American Chemical Society.

[7]  D. Gamelin,et al.  Tunneling in the Delayed Luminescence of Colloidal CdSe, Cu+-Doped CdSe, and CuInS2 Semiconductor Nanocrystals and Relationship to Blinking , 2016 .

[8]  H. Zeng,et al.  Quantum Dot Light‐Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3) , 2015, Advanced materials.

[9]  Jinju Zheng,et al.  Mn2+-doped Zn–In–S quantum dots with tunable bandgaps and high photoluminescence properties , 2015 .

[10]  S. Patole,et al.  Photoluminescence Properties of Manganese-Doped Zinc Selenide Quantum Dots , 2008 .

[11]  K. Nitsch,et al.  Raman scattering investigation of cesium plumbochloride, CsPbCl3, phase transitions , 2003 .

[12]  O. Matumura Electron Spin Resonance of Mn-activated Phosphors , 1959 .

[13]  Ashley R. Marshall,et al.  Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics , 2016, Science.

[14]  Wensheng Yang,et al.  Room temperature synthesis of ultra-small, near-unity single-sized lead halide perovskite quantum dots with wide color emission tunability, high color purity and high brightness , 2016, Nanotechnology.

[15]  Richard L. Brutchey,et al.  On the crystal structure of colloidally prepared CsPbBr3 quantum dots. , 2016, Chemical communications.

[16]  D. Son,et al.  Energy and Charge Transfer Dynamics in Doped Semiconductor Nanocrystals , 2012 .

[17]  Yitong Dong,et al.  Exciton-to-Dopant Energy Transfer in Mn-Doped Cesium Lead Halide Perovskite Nanocrystals. , 2016, Nano letters.

[18]  D. Son,et al.  Doping location-dependent energy transfer dynamics in Mn-doped CdS/ZnS nanocrystals. , 2012, ACS nano.

[19]  M. I. Cohen,et al.  Phase Transitions in CsPbCl3 , 1971 .

[20]  D. Gamelin,et al.  Delayed Exciton Emission and Its Relation to Blinking in CdSe Quantum Dots. , 2015, Nano letters.

[21]  Chun-Che Lin,et al.  Efficient and Stable Luminescence from Mn2+ in Core and Core–Isocrystalline Shell CsPbCl3 Perovskite Nanocrystals , 2017, Chemistry of materials : a publication of the American Chemical Society.

[22]  A. Podlesnyak,et al.  Extraction of exchange parameters in transition-metal perovskites , 2015, 1510.00569.

[23]  S. Dutta,et al.  Doping Mn2+ in Lead Halide Perovskite Nanocrystals: Successes and Challenges , 2017 .

[24]  H. Zeng,et al.  Stabilizing Cesium Lead Halide Perovskite Lattice through Mn(II) Substitution for Air-Stable Light-Emitting Diodes. , 2017, Journal of the American Chemical Society.

[25]  Yongtian Wang,et al.  In Situ Fabrication of Halide Perovskite Nanocrystal‐Embedded Polymer Composite Films with Enhanced Photoluminescence for Display Backlights , 2016, Advanced materials.

[26]  Daniel R. Gamelin,et al.  Zero-reabsorption doped-nanocrystal luminescent solar concentrators. , 2014, ACS nano.

[27]  D. Gamelin,et al.  Tunable dual emission in doped semiconductor nanocrystals. , 2010, Nano letters.

[28]  Daniel R. Gamelin,et al.  Dual-Emitting Nanoscale Temperature Sensors , 2013 .

[29]  Yongan Yang,et al.  Radial-position-controlled doping of CdS/ZnS core/shell nanocrystals: surface effects and position-dependent properties. , 2009, Chemistry.

[30]  Christopher H. Hendon,et al.  Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut , 2015, Nano letters.

[31]  D. Gamelin,et al.  Nanocrystals for luminescent solar concentrators. , 2015, Nano letters.

[32]  H. Zeng,et al.  All Inorganic Halide Perovskites Nanosystem: Synthesis, Structural Features, Optical Properties and Optoelectronic Applications. , 2017, Small.

[33]  V. Klimov,et al.  Mn2+-Doped Lead Halide Perovskite Nanocrystals with Dual-Color Emission Controlled by Halide Content. , 2016, Journal of the American Chemical Society.

[34]  Jinju Zheng,et al.  Thermal stability of Mn2+ ion luminescence in Mn-doped core-shell quantum dots. , 2014, Nanoscale.

[35]  Yongan Yang,et al.  Excitation-intensity-dependent color-tunable dual emissions from manganese-doped CdS/ZnS core/shell nanocrystals. , 2010, Angewandte Chemie.

[36]  M. Fiebig,et al.  Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites , 2015, Nature Communications.

[37]  Wensheng Yang,et al.  Non-injection gram-scale synthesis of cesium lead halide perovskite quantum dots with controllable size and composition , 2016, Nano Research.

[38]  Yiping Cui,et al.  Postsynthetic Doping of MnCl2 Molecules into Preformed CsPbBr3 Perovskite Nanocrystals via a Halide Exchange‐Driven Cation Exchange , 2017, Advanced materials.

[39]  N. Pradhan,et al.  An alternative of CdSe nanocrystal emitters: pure and tunable impurity emissions in ZnSe nanocrystals. , 2005, Journal of the American Chemical Society.

[40]  Jinju Zheng,et al.  Improved Photoluminescence of MnS/ZnS Core/Shell Nanocrystals by Controlling Diffusion of Mn Ions into the ZnS Shell , 2010 .

[41]  D. Gamelin,et al.  Ferromagnetic excited-state Mn 2 + dimers in Zn 1 − x Mn x Se quantum dots observed by time-resolved magnetophotoluminescence , 2014 .

[42]  J. Martínez‐Pastor,et al.  Delayed Luminescence in Lead Halide Perovskite Nanocrystals , 2017 .

[43]  Paul I. Archer,et al.  Exciton storage by Mn(2+) in colloidal Mn(2+)-doped CdSe quantum dots. , 2008, Nano letters.

[44]  X. Zhong,et al.  Dual emissive manganese and copper Co-doped Zn-In-S quantum dots as a single color-converter for high color rendering white-light-emitting diodes. , 2015, ACS applied materials & interfaces.

[45]  J. Even,et al.  Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications , 2015, Light: Science & Applications.

[46]  R. White,et al.  EPR Study of the Structure of CsPbCl3 , 1969 .

[47]  M. Jagadeeswararao,et al.  Colloidal Mn-Doped Cesium Lead Halide Perovskite Nanoplatelets , 2017 .

[48]  Z. G. Wang,et al.  Concentration effect of Mn2+ on the photoluminescence of ZnS:Mn nanocrystals , 2005 .

[49]  H. Zeng,et al.  CsPbX3 Quantum Dots for Lighting and Displays: Room‐Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light‐Emitting Diodes , 2016 .

[50]  Hao Zhang,et al.  CsPb x Mn 1 − x Cl 3 Perovskite Quantum Dots with High Mn Substitution Ratio , 2017 .

[51]  M. Kovalenko,et al.  High‐Temperature Photoluminescence of CsPbX3 (X = Cl, Br, I) Nanocrystals , 2017 .

[52]  Chun-Che Lin,et al.  Luminescent manganese-doped CsPbCl3 perovskite quantum dots , 2017, Scientific Reports.

[53]  J. Even,et al.  Neutral and Charged Exciton Fine Structure in Single Lead Halide Perovskite Nanocrystals Revealed by Magneto-optical Spectroscopy. , 2017, Nano letters.