Controlled Synthesis of Nanosized Particles by Aerosol Processes

Solid particles in the 1 nm < dp < 100 nm size range form in gases as a result of gas phase condensation, particle collision processes, and solid-state processes. The relative rates of sintering and collision determine the size and morphology of the spheroidal primary particles. Rapid sintering is equivalent to the classical theory of coagulation with instantaneous coalescence. When the sintering rate is slow compared with the collision rate, fine primary particles form and aggregate into irregularly shaped agglomerates. The growth of primary particles in an aerosol generator that is cooling at a constant rate was studied theoretically. The most important process parameter determining particle diameter is the maximum gas temperature, because the rate of sintering is a sensitive function of temperature. Aerosol volume loading and cooling rate are important when the rate of particle growth is limited by collision processes. Experiments on the formation of alumina particles were made to study these effects. ...

[1]  N. Ichinose,et al.  Superfine Particle Technology , 1991 .

[2]  S. Friedlander,et al.  Aerosol Coagulation and Diffusion in a Turbulent Jet , 1978 .

[3]  P. Mériaudeau,et al.  Preparation in a hydrogen-oxygen flame of ultrafine metal oxide particles. Oxidative properties toward hydrocarbons in the presence of ultraviolet radiation , 1972 .

[4]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[5]  A. Claire The analysis of grain boundary diffusion measurements , 1963 .

[6]  Marcelo M. Hirschler,et al.  Soot From Fires: III. Soot Suppression , 1986 .

[7]  David J. Young,et al.  Diffusion in the Condensed State , 1988 .

[8]  G. D. Ulrich,et al.  III. Coalescence as a Rate-Controlling Process , 1977 .

[9]  Eastman,et al.  Structural characterization of nanometer-sized crystalline Pd by x-ray-diffraction techniques. , 1991, Physical review. B, Condensed matter.

[10]  R. Buhrman,et al.  Ultrafine metal particles , 1976 .

[11]  R. E. Tressler,et al.  Deformation of Ceramic Materials , 1975 .

[12]  W. Koch,et al.  The effect of particle coalescence on the surface area of a coagulating aerosol , 1990 .

[13]  A. Alivisatos,et al.  Melting in Semiconductor Nanocrystals , 1992, Science.

[14]  N. A. Gjostein,et al.  Influence of surface energy anisotropy on morphological changes occurring by surface diffusion , 1975 .

[15]  S. Friedlander,et al.  Particle Growth by Coalescence and Agglomeration , 1991 .

[16]  S. Pratsinis,et al.  The effect of ionic additives on aerosol coagulation , 1992 .

[17]  J. Katz,et al.  Silica particle synthesis in a counterflow diffusion flame reactor , 1989 .

[18]  J. Sambles,et al.  The melting of small particles. I. Lead , 1975, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  D. T. Livey,et al.  Surface Energies of Solid Oxides and Carbides , 1956 .

[20]  M. Astier,et al.  Determination of the diffusion coefficients from sintering data of ultrafine oxide particles , 1976 .

[21]  Themis Matsoukas,et al.  Dynamics of aerosol agglomerate formation , 1991 .

[22]  F. Spaepen A New Look At Amorphous Vs Microcrystalline Structure , 1988 .

[23]  E. W. Hart On the role of dislocations in bulk diffusion , 1957 .

[24]  The self-preserving particle size distribution for coagulation by Brownian motion—III. Smoluchowski coagulation and simultaneous Maxwellian condensation☆ , 1970 .

[25]  Zhu,et al.  X-ray diffraction studies of the structure of nanometer-sized crystalline materials. , 1987, Physical review. B, Condensed matter.

[26]  W. D. Kingery,et al.  Introduction to Ceramics , 1976 .

[27]  J. Seinfeld,et al.  Production of ultrafine metal oxide aerosol particles by thermal decomposition of metal alkoxide vapors , 1986 .

[28]  L. G. Harrison Influence of dislocations on diffusion kinetics in solids with particular reference to the alkali halides , 1961 .

[29]  M. Zachariah,et al.  Controlled Nucleation in Aerosol Reactors for Suppression of Agglomerate Formation: A Numerical Study , 1990 .

[30]  W. Mullins Theory of Thermal Grooving , 1957 .

[31]  G. D. Ulrich,et al.  Theory of Particle Formation and Growth in Oxide Synthesis Flames , 1971 .

[32]  A. Sarofim,et al.  Factors determining the primary particle size of flame-generated inorganic aerosols , 1989 .

[33]  Charles Richard Arthur Catlow,et al.  Mass Transport in Solids , 1983 .

[34]  R. Birringer,et al.  Diffusion in nanocrystalline material , 1987 .

[35]  C. P. Flynn,et al.  Point Defects and Diffusion , 1973 .

[36]  D. Johnson,et al.  New Method of Obtaining Volume, Grain‐Boundary, and Surface Diffusion Coefficients from Sintering Data , 1969 .

[37]  R. M. Cannon,et al.  Plastic Deformation of Fine‐Grained Alumina (Al2O3): I, Interface‐Controlled Diffusional Creep , 1980 .

[38]  A. Nowick,et al.  Diffusion in crystalline solids , 1984 .

[39]  K. Akashi,et al.  Preparation of Ultrafine Iron Particles using an RF Plasma , 1981 .

[40]  P. Mcmurry,et al.  Modelling particle formation and growth in a plasma synthesis reactor , 1988 .

[41]  B. Haynes,et al.  The effect of metal additives on the formation of soot in premixed flames , 1979 .

[42]  J. B. Holt,et al.  Combustion and plasma synthesis of high-temperature materials , 1990 .

[43]  S. Friedlander,et al.  Enhanced power law agglomerate growth in the free molecule regime , 1993 .

[44]  Richard C. Flagan,et al.  Design and evaluation of new low-pressure impactor. I , 1978 .