Mathematical Modeling of the Limiting Current Density from Diffusion-Reaction Systems

The limiting current density is one of to the most important indicators in electroplating for the maximal current density from which a metal can be deposited effectively from an electrolyte. Hence, it is an indicator of the maximal deposition speed and the homogeneity of the thickness of the deposited metal layer. For these reasons, a major interest in the limiting current density is given in practical applications. Usually, the limiting current density is determined via measurements. In this article, a simple model to compute the limiting current density is presented, basing on a system of diffusion–reaction equations in one spatial dimension. Although the model formulations need many assumptions, it is of special interest for screenings, as well as for comparative work, and could easily be adjusted to measurements.

[1]  Thomas Mehner,et al.  Stabilization of the Computation of Stability Constants and Species Distributions from Titration Curves , 2021, Comput..

[2]  T. Mehner,et al.  On a Robust and Efficient Numerical Scheme for the Simulation of Stationary 3-Component Systems with Non-Negative Species-Concentration with an Application to the Cu Deposition from a Cu-(β-alanine)-Electrolyte , 2021, Algorithms.

[3]  Joan Cecilia Averós,et al.  Numerical Simulation of Non-Linear Models of Reaction - Diffusion for a DGT Sensor , 2020, Algorithms.

[4]  Albert Y. Zomaya,et al.  Partial Differential Equations , 2005, Explorations in Numerical Analysis.

[5]  Nils-Christian Bösch Numerische Simulation von Korrosionsprozessen für die industrielle Anwendung , 2017 .

[6]  S. Roy,et al.  Application of a duplex diffusion layer model to pulse reverse plating , 2017 .

[7]  Hans Petter Langtangen,et al.  Scaling of Differential Equations , 2016 .

[8]  Henrik Ekström,et al.  COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review , 2014 .

[9]  Hao Zhang,et al.  Key role of the resin layer thickness in the lability of complexes measured by DGT. , 2011, Environmental science & technology.

[10]  B. Chopard,et al.  Metal flux and dynamic speciation at (bio)interfaces. Part III: MHEDYN, a general code for metal flux computation; application to simple and fulvic complexants. , 2008, Environmental science & technology.

[11]  J. Buffle,et al.  Metal flux and dynamic speciation at (bio)interfaces. Part I: Critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances. , 2007, Environmental science & technology.

[12]  Martin Stynes,et al.  Numerical Treatment of Partial Differential Equations , 2007 .

[13]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[14]  A. Filzwieser,et al.  Current density limitation and diffusion boundary layer calculation using CFD method , 2002 .

[15]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[16]  N. Holt,et al.  Determination of the nernst diffusion layer thickness in the hydroson agitation tank , 1984 .

[17]  W. Vielstich Der Zusammenhang zwischen Nernstscher Diffusionsschicht und Prandtlscher Strömungsgrenzschicht , 1953, Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie.

[18]  T. Widayatno MODELLING AND SIMULATION OF CURRENT DISTRIBUTION OF NICKEL ELECTRODEPOSITION FROM LOW ELECTROLYTE CONCENTRATION AT A NARROW INTERELECTRODE GAP , 2016 .

[19]  H. Cesiulis,et al.  Electroreduction of Ni(II) and Co(II) from Pyrophosphate Solutions , 2010 .

[20]  Ivan P. Gavrilyuk,et al.  Variational analysis in Sobolev and BV spaces , 2007, Math. Comput..