Parallel implementation of a lattice-gauge-theory code: studying quark confinement on PC clusters

We consider the implementation of a parallel Monte Carlo code for high-performance simulations on PC clusters with MPI. We carry out tests of speedup and efficiency. The code is used for numerical simulations of pure SU(2) lattice gauge theory at very large lattice volumes, in order to study the infrared behavior of gluon and ghost propagators. This problem is directly related to the confinement of quarks and gluons in the physics of strong interactions.

[1]  A. Fucci,et al.  Status of the apeNEXT project , 2003 .

[2]  S. Hioki Construction of Staples in Lattice Gauge Theory on a Parallel Computer , 1996, Parallel Comput..

[3]  Wu-Ki Tung,et al.  Group Theory in Physics , 1985 .

[4]  D. Zwanziger Fundamental modular region, Boltzmann factor and area law in lattice theory , 1994 .

[5]  Michael Creutz,et al.  Monte Carlo Study of Quantized SU(2) Gauge Theory , 1980 .

[6]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[7]  Running coupling constant and propagators inSU(2) Landau gauge , 2002, hep-lat/0209040.

[8]  J. J. Sakurai,et al.  Modern Quantum Mechanics , 1986 .

[9]  Jack J. Dongarra,et al.  Solving linear systems on vector and shared memory computers , 1990 .

[10]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .

[11]  Multi-grid Monte Carlo (III). Two-dimensional O(4)-symmetric non-linear σ-model , 1991, hep-lat/9112002.

[12]  M. L. Paciello,et al.  Problems on Lattice Gauge Fixing , 2001, hep-lat/0104012.

[13]  Algorithms for pure gauge theory , 1989 .

[14]  T. Wettig,et al.  The QCDOC supercomputer: hardware, software, and performance , 2003, hep-lat/0306023.

[15]  Hugh Garraway Parallel Computer Architecture: A Hardware/Software Approach , 1999, IEEE Concurrency.

[16]  D Toussaint,et al.  High-precision lattice QCD confronts experiment. , 2003, Physical review letters.

[17]  Raffaele Tripiccione,et al.  An overview of the APEmille project , 1998 .

[18]  M. Luescher,et al.  A Portable High-quality Random Number Generator for Lattice Field Theory Simulations , 1993 .

[19]  SU(2) running coupling constant and confinement in minimal Coulomb and Landau gauges , 2001, hep-lat/0110188.

[20]  K. Wilson Confinement of Quarks , 1974 .

[21]  Wu-Ki Tung,et al.  Group Theory in Physics: An Introduction to Symmetry Principles, Group Representations, and Special Functions in Classical and Quantum Physics , 1985 .

[22]  V. N. Gribov,et al.  Quantization of non-Abelian gauge theories , 1978 .

[23]  Robert D. Mawhinney The 1 Teraflops QCDSP computer , 1999, Parallel Comput..

[24]  A. Cucchieri,et al.  SU (2) Landau gluon propagator on a 140^{3} lattice , 2003, hep-lat/0302022.

[25]  H. J. Rothe Lattice Gauge Theories: An Introduction , 1992 .

[26]  Critical slowing-down in SU(2) Landau-gauge-fixing algorithms at β=∞ , 2003, hep-lat/0301019.

[27]  K. Moriyasu,et al.  An Elementary Primer for Gauge Theory , 1983 .

[28]  Michel Le Bellac,et al.  Quantum and statistical field theory , 1991 .

[29]  Martin Lüscher,et al.  Lattice QCD on PCs , 2001 .