On copositive matrices

Abstract A criterion for copositive matrices is given and for n = 3 the set of all copositive matrices is determined in terms of matrix elements. Copositive matrices are applied to the problem of excluding periodic solutions of certain algebraic differential equations.

[1]  C. E. Lemke,et al.  QUADRATIC FORMS SEMI-DEFINITE OVER CONVEX CONES. , 1967 .

[2]  D. H. Martin Finite criteria for conditional definiteness of quadratic forms , 1981 .

[3]  Richard W. Cottle,et al.  On classes of copositive matrices , 1970 .

[4]  E. J. McShane,et al.  A theorem on quadratic forms and its application in the calculus of variations , 1940 .

[5]  Jerry W. Gaddum Linear inequalities and quadratic forms , 1958 .

[6]  T. Motzkin,et al.  Maxima for Graphs and a New Proof of a Theorem of Turán , 1965, Canadian Journal of Mathematics.

[7]  V. Baston Extreme copositive quadratic forms , 1969 .

[8]  R. Cottle Manifestations of the Schur complement , 1974 .

[9]  D. H. Jacobson A GENERALIZATION OF FINSLER'S THEOREM FOR QUADRATIC INEQUALITIES AND EQUALITIES , 1976 .

[10]  Alan J. Hoffman,et al.  On Copositive Matrices with - 1, 0, 1 Entries , 1973, J. Comb. Theory A.

[11]  H. Hancock Theory of Maxima and Minima , 1919 .

[12]  A. Williams,et al.  Boundedness relations for linear constraint sets , 1970 .

[13]  Hans Schneider,et al.  Positive operators on the n-dimensional ice cream cone , 1975 .

[14]  A. Berman Cones, matrices and mathematical programming , 1973 .

[15]  G. Rota Non-negative matrices in the mathematical sciences: A. Berman and R. J. Plemmons, Academic Press, 1979, 316 pp. , 1983 .

[16]  D. Jacobson Extensions of Linear-Quadratic Control, Optimization and Matrix Theory , 1977 .

[17]  Henryk Minc,et al.  On the Matrix Equation X′X = A , 1962, Proceedings of the Edinburgh Mathematical Society.

[18]  M. Hall,et al.  Copositive and completely positive quadratic forms , 1963, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  P. H. Diananda On non-negative forms in real variables some or all of which are non-negative , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.

[20]  D. H. Jacobson,et al.  Copositive matrices and definiteness of quadratic forms subject to homogeneous linear inequality constraints , 1981 .

[21]  T. Markham,et al.  Factorizations of completely positive matrices , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[22]  M. J. D. Powell,et al.  On a decomposition of conditionally positive-semidefinite matrices☆ , 1981 .

[23]  Alan J. Hoffman,et al.  Two remarks on compositive matrices , 1969 .

[24]  Leonard Daniel Baumert Extreme copositive quadratic forms , 1966 .

[25]  R. W. Farebrother,et al.  Necessary and sufficient conditions for a quadratic form to be positive whenever a set of homogeneous linear constraints is satisfied , 1977 .

[26]  D. H. Martin Conditional Positivity of Quadratic Forms in Hilbert Space , 1980 .