Analytic Approach to Light Dark Matter Propagation.

If dark matter interacts too strongly with nuclei, it could be slowed to undetectable speeds in Earth's crust or atmosphere before reaching a detector. For sub-GeV dark matter, approximations appropriate for heavier dark matter fail, necessitating the use of computationally expensive simulations. We present a new, analytic approximation for modeling attenuation of light dark matter in Earth. We show that our approach agrees well with Monte Carlo results, and can be much faster at large cross sections. We use this method to reanalyze constraints on subdominant dark matter.

[1]  Seodong Shin,et al.  Manifesting hidden dynamics of a sub-component dark matter , 2021, Journal of Cosmology and Astroparticle Physics.

[2]  P. Scott,et al.  Simulation of energy transport by dark matter scattering in stars , 2021, Journal of Cosmology and Astroparticle Physics.

[3]  Yu-feng Zhou,et al.  Production and attenuation of cosmic-ray boosted dark matter , 2021, Journal of Cosmology and Astroparticle Physics.

[4]  S. Palomares-Ruiz,et al.  Evaporation of dark matter from celestial bodies , 2021, Journal of Cosmology and Astroparticle Physics.

[5]  J. Kopp,et al.  Dark matter, destroyer of worlds: neutrino, thermal, and existential signatures from black holes in the Sun and Earth , 2020, 2012.09176.

[6]  J. Jaeckel,et al.  Boosted neutrinos and relativistic dark particles as messengers from reheating , 2020, Journal of Cosmology and Astroparticle Physics.

[7]  B. Carr,et al.  Primordial Black Holes as Dark Matter: Recent Developments , 2020, Annual Review of Nuclear and Particle Science.

[8]  R. Leane,et al.  Warming nuclear pasta with dark matter: kinetic and annihilation heating of neutron star crusts , 2019, Journal of Cosmology and Astroparticle Physics.

[9]  Lucy Rosenbloom arXiv , 2019, The Charleston Advisor.

[10]  R. Essig,et al.  Direct detection of strongly interacting sub-GeV dark matter via electron recoils , 2019, Journal of Cosmology and Astroparticle Physics.

[11]  J. Cudell,et al.  Strongly interacting dark matter and the DAMA signal , 2019, Journal of Cosmology and Astroparticle Physics.

[12]  W. Yin Highly-boosted dark matter and cutoff for cosmic-ray neutrinos through neutrino portal , 2018, EPJ Web of Conferences.

[13]  M. Lindner,et al.  MeV dark matter complementarity and the dark photon portal , 2018, 1801.05447.

[14]  Nazmus Saquib,et al.  Sensei , 2018, Proc. ACM Interact. Mob. Wearable Ubiquitous Technol..

[15]  C. Pagliarone,et al.  Results on MeV-scale dark matter from a gram-scale cryogenic calorimeter operated above ground , 2017, 1707.06749.

[16]  C. Kouvaris,et al.  DaMaSCUS: the impact of underground scatterings on direct detection of light dark matter , 2017, 1706.02249.

[17]  A. Simone,et al.  Evaporation and scattering of momentum- and velocity-dependent dark matter in the Sun , 2017, 1703.07784.

[18]  S. Palomares-Ruiz,et al.  Dark matter in the Sun: scattering off electrons vs nucleons , 2017, 1702.02768.

[19]  R. Catena,et al.  Signatures of Earth-scattering in the direct detection of Dark Matter , 2016, 1611.05453.

[20]  R. Catena,et al.  Form factors for dark matter capture by the Sun in effective theories , 2015, 1501.03729.

[21]  R. Foot,et al.  Diurnal modulation signal from dissipative hidden sector dark matter , 2014, 1412.0762.

[22]  P. Graham,et al.  Semiconductor Probes of Light Dark Matter , 2012, 1203.2531.

[23]  Jong-Chul Park,et al.  Assisted freeze-out , 2011, 1112.4491.

[24]  M. Tytgat,et al.  The four basic ways of creating dark matter through a portal , 2011, 1112.0493.

[25]  Jonathan L. Feng Dark Matter Candidates from Particle Physics and Methods of Detection , 2010, 1003.0904.

[26]  K. Sigurdson,et al.  Can we discover dual-component thermal WIMP dark matter? , 2009, 0907.4374.

[27]  K. Bibber,et al.  Axions as dark matter particles , 2009, 0904.3346.

[28]  Fredrik Sandin,et al.  Effects of mirror dark matter on neutron stars , 2008, 0809.2942.

[29]  Jonathan L. Feng,et al.  Thermal relics in hidden sectors , 2008, 0808.2318.

[30]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[31]  Nikil D. Dutt,et al.  System and architecture-level power reduction of microprocessor-based communication and multi-media applications , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[32]  M. Kamionkowski,et al.  Supersymmetric Dark Matter , 1995, hep-ph/9506380.

[33]  B. Holdom Two U(1)'s and Epsilon Charge Shifts , 1986 .

[34]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[35]  W. Marsden I and J , 2012 .

[36]  Preprint typeset in JHEP style- HYPER VERSION... Scalar Dark Matter candidates , 2003 .

[37]  and as an in , 2022 .