Characterization of dislocation structures and deformation mechanisms in as-grown and deformed directionally solidified NiAl–Mo composites

[1]  G. Pharr,et al.  A simple stochastic model for yielding in specimens with limited number of dislocations , 2013 .

[2]  J. R. Morris,et al.  Scale effects in convoluted thermal/spatial statistics of plasticity initiation in small stressed volumes during nanoindentation , 2012 .

[3]  A. Minor,et al.  Dislocation starvation and exhaustion hardening in Mo alloy nanofibers , 2012 .

[4]  Yanfei Gao,et al.  Interface strength in NiAl–Mo composites from 3-D X-ray microdiffraction , 2011 .

[5]  J. R. Morris,et al.  Size effects and stochastic behavior of nanoindentation pop in. , 2011, Physical review letters.

[6]  G. Pharr,et al.  Scanning transmission electron microscope observations of defects in as-grown and pre-strained Mo alloy fibers , 2011 .

[7]  M. Graef,et al.  Systematic row and zone axis STEM defect image simulations , 2011 .

[8]  Yanfei Gao,et al.  3D x-ray microprobe investigation of local dislocation densities and elastic strain gradients in a NiAl-Mo composite and exposed Mo micropillars as a function of prestrain , 2010 .

[9]  Blythe G. Clark,et al.  Effect of orientation and loading rate on compression behavior of small-scale Mo pillars , 2009 .

[10]  G. Pharr,et al.  Effects of pre-strain on the compressive stress-strain response of Mo-alloy single-crystal micropillars , 2008 .

[11]  Christopher R. Weinberger,et al.  Surface-controlled dislocation multiplication in metal micropillars , 2008, Proceedings of the National Academy of Sciences.

[12]  G. Pharr,et al.  Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique , 2007 .

[13]  J. Greer,et al.  Nanoscale gold pillars strengthened through dislocation starvation , 2006 .

[14]  Vasily V. Bulatov,et al.  Dislocation multi-junctions and strain hardening , 2006, Nature.

[15]  G. Pharr,et al.  Thermal-expansion behavior of a directionally solidified NiAl–Mo composite investigated by neutron diffraction and dilatometry , 2005 .

[16]  Julia R. Greer,et al.  Size dependence of mechanical properties of gold at the micron scale in the absence of strain gradients , 2005 .

[17]  Easo P George,et al.  Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy , 2005 .

[18]  D. Dimiduk,et al.  Sample Dimensions Influence Strength and Crystal Plasticity , 2004, Science.

[19]  Dian‐sen Li,et al.  Microstructure investigation of NiAl-Cr(Mo) interface in a directionally solidified NiAl-Cr(Mo) eutectic alloyed with refractory metal , 2004 .

[20]  R. Srinivasan,et al.  Observations and modelling of a dislocations in NiAl at intermediate temperatures , 1998 .

[21]  A. Misra,et al.  Microstructures and mechanical properties of directionally solidified NiAl-Mo and NiAl-Mo(Re) eutectic alloys , 1997 .

[22]  W. Nix,et al.  Dislocation energies for an anisotropic cubic crystal calculations and observations for NiAl , 1993 .

[23]  N. Doyle,et al.  Further studies on the nickel–aluminum system. II. Vacancy filling in β and δ‐phase alloys by compression at high temperatures , 1972 .

[24]  J. W. Matthews Accommodation of misfit across the interface between single-crystal films of various face-centred cubic metals , 1966 .

[25]  David B. Williams,et al.  Transmission Electron Microscopy , 1996 .

[26]  A. Evans,et al.  Matrix fracture in fiber-reinforced ceramics , 1986 .