Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait

The capability of animals to emit light, called bioluminescence, is considered to be a major factor in ecological interactions. Because it occurs across diverse taxa, measurements of bioluminescence can be powerful to detect and quantify organisms in the ocean. In this study, 17 years of video observations were recorded by remotely operated vehicles during surveys off the California Coast, from the surface down to 3,900 m depth. More than 350,000 observations are classified for their bioluminescence capability based on literature descriptions. The organisms represented 553 phylogenetic concepts (species, genera or families, at the most precise taxonomic level defined from the images), distributed within 13 broader taxonomic categories. The importance of bioluminescent marine taxa is highlighted in the water column, as we showed that 76% of the observed individuals have bioluminescence capability. More than 97% of Cnidarians were bioluminescent, and 9 of the 13 taxonomic categories were found to be bioluminescent dominant. The percentage of bioluminescent animals is remarkably uniform over depth. Moreover, the proportion of bioluminescent and non-bioluminescent animals within taxonomic groups changes with depth for Ctenophora, Scyphozoa, Chaetognatha, and Crustacea. Given these results, bioluminescence has to be considered an important ecological trait from the surface to the deep-sea.

[1]  Richard S. Lampitt,et al.  The Porcupine Abyssal Plain fixed-point sustained observatory (PAP-SO): variations and trends from the Northeast Atlantic fixed-point time-series , 2012 .

[2]  J. Case,et al.  Not All Ctenophores Are Bioluminescent: Pleurobrachia. , 1995, The Biological bulletin.

[3]  Yu. N. Tokarevl The bioluminescent field of the Atlantic Ocean , 2006 .

[4]  V. Trenkel,et al.  Availability of deep-water fish to trawling and visual observation from a remotely operated vehicle (ROV) , 2004 .

[5]  E. A. Widdera,et al.  Using red light for in situ observations of deep-sea fishes , 2005 .

[6]  Chris Roman,et al.  Observations of in situ deep-sea marine bioluminescence with a high-speed, high-resolution sCMOS camera , 2016 .

[7]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[8]  I. Priede,et al.  Near seafloor bioluminescence, macrozooplankton and macroparticles at the Mid-Atlantic Ridge , 2015 .

[9]  Steven H. D. Haddock,et al.  Using red light for in situ observations of deep-sea fishes , 2005 .

[10]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[11]  E. Widder,et al.  Review of Bioluminescence for Engineers and Scientists in Biophotonics , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  E. V. Thuesen,et al.  Bioluminescent Organs of Two Deep-Sea Arrow Worms, Eukrohnia fowleri and Caecosagitta macrocephala, With Further Observations on Bioluminescence in Chaetognaths , 2010, The Biological Bulletin.

[13]  W. Balch,et al.  Molecular Detection of Bioluminescent Dinoflagellates in Surface Waters of the Patagonian Shelf during Early Austral Summer 2008 , 2014, PloS one.

[14]  J. G. Morin Coastal bioluminescence: patterns and functions , 1983 .

[15]  Mark A. Moline,et al.  Bioluminescence to reveal structure and interaction of coastal planktonic communities , 2009 .

[16]  Bruce H. Robison,et al.  Deep pelagic biology , 2004 .

[17]  B.M. Schlining,et al.  MBARI's Video Annotation and Reference System , 2006, OCEANS 2006.

[18]  Imants G. Priede,et al.  Bioluminescence in the deep sea: free-fall lander observations in the Atlantic Ocean off Cape Verde , 2006 .

[19]  Pascal Lorance,et al.  Behaviour and habitat utilisation of seven demersal fish species on the Bay of Biscay continental slope, NE Atlantic , 2003 .

[20]  G. I. Matsumoto,et al.  Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.) , 2003 .

[21]  P. Herring Systematic distribution of bioluminescence in living organisms. , 1987, Journal of bioluminescence and chemiluminescence.

[22]  G. Matsumoto,et al.  Stellamedusa ventana, a new mesopelagic scyphomedusa from the eastern Pacific representing a new subfamily, the Stellamedusinae , 2004, Journal of the Marine Biological Association of the United Kingdom.

[23]  J. Berge,et al.  Bioluminescence as an ecological factor during high Arctic polar night , 2016, Scientific Reports.

[24]  C. Tamburini,et al.  Relation between deep bioluminescence and oceanographic variables: A statistical analysis using time-frequency decompositions , 2014 .

[25]  C. Dunn,et al.  Molecular phylogenetics of the siphonophora (Cnidaria), with implications for the evolution of functional specialization. , 2005, Systematic biology.

[26]  P. Geistdoerfer,et al.  Variations nycthémérales de la bioluminescence marine en Méditerranée et dans l'Atlantique nord-est , 2001 .

[27]  P. Bagley,et al.  Seasonal variation of deep-sea bioluminescence in the Ionian Sea , 2011 .

[28]  I. Priede,et al.  Distribution of bioluminescent organisms in the Mediterranean Sea and predicted effects on a deep-sea neutrino telescope , 2009 .

[29]  J. Sparks,et al.  Species-specific bioluminescence facilitates speciation in the deep sea , 2014, Marine biology.

[30]  Alain F. Zuur,et al.  The potential influence of bioluminescence from marine animals on a deep-sea underwater neutrino telescope array in the Mediterranean Sea , 2008 .

[31]  V. Trenkel,et al.  Do visual transects provide true population density estimates for deepwater fish , 2004 .

[32]  F. Chavez Forcing and biological impact of onset of the 1992 El Niño in central California , 1996 .

[33]  Adrian P. Martin,et al.  A review of the measurement and modelling of dinoflagellate bioluminescence , 2013 .

[34]  P. Geistdoerfer,et al.  Plancton Marin Bioluminescent: inventaire documenté des espèces et bilan des formes les plus communes de la mer d'Iroise , 1999 .

[35]  G. Cailliet,et al.  Fish faunal and habitat analyses using trawls, camera sleds and submersibles in benthic deep-sea hab , 1999 .

[36]  E. Widder Bioluminescence and the Pelagic Visual Environment , 2002 .

[37]  J. Case,et al.  Bioluminescence spectra of shallow and deep-sea gelatinous zooplankton: ctenophores, medusae and siphonophores , 1999 .

[38]  A. Heijboer,et al.  Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface , 2013, PloS one.

[39]  M. Moline,et al.  Bioluminescence in the sea. , 2010, Annual review of marine science.

[40]  Peter Herring,et al.  The Biology of the deep ocean , 2002 .

[41]  I. Shulman,et al.  Can vertical migrations of dinoflagellates explain observed bioluminescence patterns during an upwelling event in Monterey Bay, California? , 2012 .

[42]  D. M. Kocak,et al.  Computer vision techniques for quantifying, tracking, and identifying bioluminescent plankton , 1999 .

[43]  J. Nicol,et al.  Luminescence in Hydromedusae , 1955, Proceedings of the Royal Society of London. Series B - Biological Sciences.

[44]  P. Herring Bioluminescence in decapod Crustacea , 1976, Journal of the Marine Biological Association of the United Kingdom.

[45]  J. Aguzzi,et al.  Comparison between ROV video and Agassiz trawl methods for sampling deep water fauna of submarine canyons in the Northwestern Mediterranean Sea with observations on behavioural reactions of target species , 2016 .

[46]  P. Herring,et al.  Bioluminescence of deep-sea coronate medusae (Cnidaria: Scyphozoa) , 2004 .