暂无分享,去创建一个
[1] Zdenek Strakos,et al. On Efficient Numerical Approximation of the Bilinear Form c*A-1b , 2011, SIAM J. Sci. Comput..
[2] G. Golub,et al. Computation of large-scale quadratic forms and transfer functions using the theory of moments, quadrature and Padé approximation , 2002 .
[3] Guo-xin Liu. On Convergence Property of MINRES Method for Solving a Complex Shifted Hermitian Linear System Guiding Gu and , 2013 .
[4] C. Brezinski. The methods of Vorobyev and Lanczos , 1996 .
[5] T. Sogabe,et al. A COCR method for solving complex symmetric linear systems , 2007 .
[6] I︠u︡. V. Vorobʹev. Method of moments in applied mathematics , 1965 .
[7] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .
[8] Andreas Frommer,et al. Fast CG-Based Methods for Tikhonov-Phillips Regularization , 1999, SIAM J. Sci. Comput..
[9] Tetsuya Sakurai,et al. Filter analysis for the stochastic estimation of eigenvalue counts , 2015, JSIAM Lett..
[10] Zdenek Strakos,et al. Model reduction using the Vorobyev moment problem , 2009, Numerical Algorithms.
[11] G. Meurant. The Lanczos and conjugate gradient algorithms , 2008 .
[12] Yusaku Yamamoto,et al. On using the shifted minimal residual method for quantum-mechanical wave packet simulation , 2019, JSIAM Lett..
[13] T. Sakurai,et al. A projection method for generalized eigenvalue problems using numerical integration , 2003 .
[14] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[15] M. Saunders,et al. Solution of Sparse Indefinite Systems of Linear Equations , 1975 .
[16] G. Golub,et al. Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .
[17] Eric Polizzi,et al. A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.
[18] C. Lanczos. Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .
[19] Tomohiro Sogabe,et al. Shifted Conjugate-Orthogonal-Conjugate-Gradient Method and Its Application to Double Orbital Extended Hubbard Model(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2008 .
[20] R. Takayama,et al. Linear algebraic calculation of the Green’s function for large-scale electronic structure theory , 2006 .
[21] H. Hamburger,et al. Beiträge zur Konvergenztheorie der Stieltjesschen Kettenbrüche , 1919 .
[22] Gene H. Golub,et al. Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.
[23] Aaron Sidford,et al. Stability of the Lanczos Method for Matrix Function Approximation , 2017, SODA.
[24] Tomohiro Sogabe,et al. K$ω$ - Open-source library for the shifted Krylov subspace method , 2020, Comput. Phys. Commun..
[25] T. Fujiwara,et al. ON A WEIGHTED QUASI-RESIDUAL MINIMIZATION STRATEGY FOR SOLVING COMPLEX SYMMETRIC SHIFTED LINEAR SYSTEMS , 2008 .
[26] H. Hamburger,et al. Über eine Erweiterung des Stieltjesschen Momentenproblems , 1920 .
[27] T. Sakurai,et al. CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .
[28] Jonathan C. Mattingly,et al. Optimal approximating Markov chains for Bayesian inference , 2015, 1508.03387.
[29] Karl Meerbergen,et al. The Solution of Parametrized Symmetric Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[30] Hiroyuki Matsui,et al. Numerical aspect of large-scale electronic state calculation for flexible device material , 2018, Japan Journal of Industrial and Applied Mathematics.
[31] R. Freund,et al. QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .
[32] Siegfried M. Rump,et al. Verification of Positive Definiteness , 2006 .
[33] Roland W. Freund,et al. Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.
[34] Thomas Lippert,et al. 2-Norm Error Bounds and Estimates for Lanczos Approximations to Linear Systems and Rational Matrix Functions , 2012, SIAM J. Matrix Anal. Appl..
[35] H. V. D. Vorst,et al. A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .
[36] S. Kaniel. Estimates for Some Computational Techniques - in Linear Algebra , 1966 .
[37] Roland W. Freund,et al. Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..
[38] Z. Strakos,et al. On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .
[39] Suvrit Sra,et al. Gaussian quadrature for matrix inverse forms with applications , 2015, ICML.
[40] Z. Strakos,et al. Krylov Subspace Methods: Principles and Analysis , 2012 .
[41] Tomohiro Sogabe,et al. An Extension of the COCR Method to Solving Shifted Linear Systems with Complex Symmetric Matrices , 2011 .
[42] Gérard Meurant,et al. On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.