Shifted Lanczos method for quadratic forms with Hermitian matrix resolvents

Quadratic forms of Hermitian matrix resolvents involve the solutions of shifted linear systems. Efficient solutions use the shift-invariance property of Krylov subspaces. The Hermitian Lanczos method reduces a given vector and matrix to a Jacobi matrix (a real symmetric tridiagonal matrix with positive super and sub-diagonal entries) and approximates the quadratic form with the Jacobi matrix. This study develops a shifted Lanczos method that deals directly with the Hermitian matrix resolvent to extend the scope of problems that the Lanczos method can solve. We derive a matrix representation of a linear operator that approximates the resolvent by solving a Vorobyev moment problem associated with the shifted Lanczos method. We show that an entry of the Jacobi matrix resolvent can approximate the quadratic form. We show the moment-matching property of the shifted Lanczos method and give a sufficient condition such that the method does not break down. Numerical experiments on matrices drawn from real-world applications compare the proposed method with previous methods and show that the proposed method outperforms a well-established method in solving some problems.

[1]  Zdenek Strakos,et al.  On Efficient Numerical Approximation of the Bilinear Form c*A-1b , 2011, SIAM J. Sci. Comput..

[2]  G. Golub,et al.  Computation of large-scale quadratic forms and transfer functions using the theory of moments, quadrature and Padé approximation , 2002 .

[3]  Guo-xin Liu On Convergence Property of MINRES Method for Solving a Complex Shifted Hermitian Linear System Guiding Gu and , 2013 .

[4]  C. Brezinski The methods of Vorobyev and Lanczos , 1996 .

[5]  T. Sogabe,et al.  A COCR method for solving complex symmetric linear systems , 2007 .

[6]  I︠u︡. V. Vorobʹev Method of moments in applied mathematics , 1965 .

[7]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[8]  Andreas Frommer,et al.  Fast CG-Based Methods for Tikhonov-Phillips Regularization , 1999, SIAM J. Sci. Comput..

[9]  Tetsuya Sakurai,et al.  Filter analysis for the stochastic estimation of eigenvalue counts , 2015, JSIAM Lett..

[10]  Zdenek Strakos,et al.  Model reduction using the Vorobyev moment problem , 2009, Numerical Algorithms.

[11]  G. Meurant The Lanczos and conjugate gradient algorithms , 2008 .

[12]  Yusaku Yamamoto,et al.  On using the shifted minimal residual method for quantum-mechanical wave packet simulation , 2019, JSIAM Lett..

[13]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[14]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[15]  M. Saunders,et al.  Solution of Sparse Indefinite Systems of Linear Equations , 1975 .

[16]  G. Golub,et al.  Matrices, moments and quadrature II; How to compute the norm of the error in iterative methods , 1997 .

[17]  Eric Polizzi,et al.  A Density Matrix-based Algorithm for Solving Eigenvalue Problems , 2009, ArXiv.

[18]  C. Lanczos Solution of Systems of Linear Equations by Minimized Iterations1 , 1952 .

[19]  Tomohiro Sogabe,et al.  Shifted Conjugate-Orthogonal-Conjugate-Gradient Method and Its Application to Double Orbital Extended Hubbard Model(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2008 .

[20]  R. Takayama,et al.  Linear algebraic calculation of the Green’s function for large-scale electronic structure theory , 2006 .

[21]  H. Hamburger,et al.  Beiträge zur Konvergenztheorie der Stieltjesschen Kettenbrüche , 1919 .

[22]  Gene H. Golub,et al.  Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.

[23]  Aaron Sidford,et al.  Stability of the Lanczos Method for Matrix Function Approximation , 2017, SODA.

[24]  Tomohiro Sogabe,et al.  K$ω$ - Open-source library for the shifted Krylov subspace method , 2020, Comput. Phys. Commun..

[25]  T. Fujiwara,et al.  ON A WEIGHTED QUASI-RESIDUAL MINIMIZATION STRATEGY FOR SOLVING COMPLEX SYMMETRIC SHIFTED LINEAR SYSTEMS , 2008 .

[26]  H. Hamburger,et al.  Über eine Erweiterung des Stieltjesschen Momentenproblems , 1920 .

[27]  T. Sakurai,et al.  CIRR: a Rayleigh-Ritz type method with contour integral for generalized eigenvalue problems , 2007 .

[28]  Jonathan C. Mattingly,et al.  Optimal approximating Markov chains for Bayesian inference , 2015, 1508.03387.

[29]  Karl Meerbergen,et al.  The Solution of Parametrized Symmetric Linear Systems , 2002, SIAM J. Matrix Anal. Appl..

[30]  Hiroyuki Matsui,et al.  Numerical aspect of large-scale electronic state calculation for flexible device material , 2018, Japan Journal of Industrial and Applied Mathematics.

[31]  R. Freund,et al.  QMR: a quasi-minimal residual method for non-Hermitian linear systems , 1991 .

[32]  Siegfried M. Rump,et al.  Verification of Positive Definiteness , 2006 .

[33]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[34]  Thomas Lippert,et al.  2-Norm Error Bounds and Estimates for Lanczos Approximations to Linear Systems and Rational Matrix Functions , 2012, SIAM J. Matrix Anal. Appl..

[35]  H. V. D. Vorst,et al.  A Petrov-Galerkin type method for solving Axk=b, where A is symmetric complex , 1990 .

[36]  S. Kaniel Estimates for Some Computational Techniques - in Linear Algebra , 1966 .

[37]  Roland W. Freund,et al.  Conjugate Gradient-Type Methods for Linear Systems with Complex Symmetric Coefficient Matrices , 1992, SIAM J. Sci. Comput..

[38]  Z. Strakos,et al.  On error estimation in the conjugate gradient method and why it works in finite precision computations. , 2002 .

[39]  Suvrit Sra,et al.  Gaussian quadrature for matrix inverse forms with applications , 2015, ICML.

[40]  Z. Strakos,et al.  Krylov Subspace Methods: Principles and Analysis , 2012 .

[41]  Tomohiro Sogabe,et al.  An Extension of the COCR Method to Solving Shifted Linear Systems with Complex Symmetric Matrices , 2011 .

[42]  Gérard Meurant,et al.  On computing quadrature-based bounds for the A-norm of the error in conjugate gradients , 2012, Numerical Algorithms.