XML schema, tree logic and sheaves automata

XML documents may be roughly described as unranked, ordered trees and it is therefore natural to use tree automata to process or validate them. This idea has already been successfully applied in the context of Document Type Definition (DTD), the simplest standard for defining document validity, but additional work is needed to take into account XML Schema, a more advanced standard, for which regular tree automata are not satisfactory. In this paper, we introduce Sheaves Logic (SL), a new tree logic that extends the syntax of the – recursion-free fragment of – W3C XML Schema Definition Language (WXS). Then, we define a new class of automata for unranked trees that provides decision procedures for the basic questions about SL: model-checking; satisfiability; entailment. The same class of automata is also used to answer basic questions about WXS, including recursive schemas: decidability of type-checking documents; testing the emptiness of schemas; testing that a schema subsumes another one.

[1]  Hitoshi Ohsaki,et al.  Beyond Regularity: Equational Tree Automata for Associative and Commutative Theories , 2001, CSL.

[2]  Silvano Dal-Zilio,et al.  A logic you can count on , 2004, POPL.

[3]  Ulrike Sattler,et al.  The Complexity of the Graded µ-Calculus , 2002, CADE.

[4]  Denis Lugiez,et al.  Multitrees Automata , Presburger ’ s Constraints and Tree Logics , 2022 .

[5]  Thomas Schwentick,et al.  Query automata over finite trees , 2002, Theor. Comput. Sci..

[6]  Felix Klaedtke,et al.  Monadic Second-Order Logics with Cardinalities , 2003, ICALP.

[7]  Philip Wadler,et al.  MSL: a model for W3C XML Schema , 2002, Comput. Networks.

[8]  Thomas Schwentick,et al.  Counting in Trees for Free , 2004, ICALP.

[9]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs VIII: Orientations , 1995, Ann. Pure Appl. Log..

[10]  Silvano Dal-Zilio,et al.  XML Schema, Tree Logic and Sheaves Automata , 2003, RTA.

[11]  Frank Neven,et al.  Automata theory for XML researchers , 2002, SGMD.

[12]  Benjamin C. Pierce,et al.  Regular expression pattern matching for XML , 2003, J. Funct. Program..

[14]  James W. Thatcher,et al.  Generalized finite automata theory with an application to a decision problem of second-order logic , 1968, Mathematical systems theory.

[15]  Helmut Seidl,et al.  Binary Queries , 2002, Extreme Markup Languages®.

[16]  Thomas Schwentick,et al.  Automata-and Logic-Based Pattern Languages for Tree-Structured Data , 2001, Semantics in Databases.

[17]  Joachim Niehren,et al.  Feature Automata and Recognizable Sets of Feature Trees , 1993, TAPSOFT.

[18]  James W. Thatcher,et al.  Characterizing Derivation Trees of Context-Free Grammars through a Generalization of Finite Automata Theory , 1967, J. Comput. Syst. Sci..

[19]  Derek C. Oppen,et al.  A 2^2^2^pn Upper Bound on the Complexity of Presburger Arithmetic , 1978, J. Comput. Syst. Sci..

[20]  Denis Lugiez,et al.  Multitree automata that count , 2005, Theor. Comput. Sci..

[21]  Alain Quéré,et al.  Définition et Etude des Bilangages Réguliers , 1968, Inf. Control..

[22]  Thomas Colcombet Rewriting in the partial algebra of typed terms modulo AC , 2002, INFINITY.

[23]  Denis Lugiez,et al.  Tree Automata Help One To Solve Equational Formulae In AC-Theories , 1994, J. Symb. Comput..

[24]  Luca Cardelli,et al.  Anytime, anywhere: modal logics for mobile ambients , 2000, POPL '00.

[25]  Luca Cardelli,et al.  Subtyping recursive types , 1991, POPL '91.

[26]  Luca Cardelli,et al.  A Query Language Based on the Ambient Logic , 2001, SEBD.

[27]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[28]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[29]  Thomas Schwentick,et al.  Numerical document queries , 2003, PODS.

[30]  Makoto Murata,et al.  Extended path expressions of XML , 2001, PODS.

[31]  Dan Suciu,et al.  Data on the Web: From Relations to Semistructured Data and XML , 1999 .