Integrating databases and expert systems for the analysis of brain structures

The NeuroHomology Database system (NHDB) combines databases related to brain structure from different species with different knowledge management systems (KMSs) for systematization, evaluation and processing neurobiological data. Special attention is assessment of similarity of data from different species as a basis for exploring neural homologies. NHDB includes modules that handle brain structure and connectivity data, as well as inference engines for evaluation of the stored neurobiological information. The spatial inference engine evaluates the possible topological relations between cortical structures in different neuroanatomical atlases. The connectivity inference engine evaluates the reliability of information pertaining to fiber tracts as those are reflected in the literature. The inference engine for translation of neuroanatomical connections in different atlases evaluates the probability of existence of connections of interest in different parcellation schemes. Finally, the similarity inference engine calculates the overall degree of similarity of pairs of brain structures from different species by taking into account a set of eight criteria. We present examples of search for information in NHDB system, inferences of relations between cortical structures from equivalent neuroanatomical atlases, reconstruction of functional networks of brain structures from data collated from the literature, translation of connectivity matrices in equivalent parcellation schemes, and evaluations of similarities of brain structures from humans, macaques and rats.

[1]  G. Rizzolatti,et al.  Functional organization of inferior area 6 in the macaque monkey , 2004, Experimental Brain Research.

[2]  Jayant Sharma,et al.  Integrated spatial reasoning in geographic information systems: combining topology and direction , 1996 .

[3]  A. Butler,et al.  The evolution of the dorsal pallium in the telencephalon of amniotes: Cladistic analysis and a new hypothesis , 1994, Brain Research Reviews.

[4]  P. Goldman-Rakic,et al.  Myelo‐ and cytoarchitecture of the granular frontal cortex and surrounding regions in the strepsirhine primate Galago and the anthropoid primate Macaca , 1991, The Journal of comparative neurology.

[5]  A. Purvis A composite estimate of primate phylogeny. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[6]  Yi-Shin Chen,et al.  Tools and approaches for the construction of knowledge models from the neuroscientific literature , 2003, Neuroinformatics.

[7]  A. Reiner,et al.  Structural and functional evolution of the basal ganglia in vertebrates , 1998, Brain Research Reviews.

[8]  L. Krubitzer The organization of neocortex in mammals: are species differences really so different? , 1995, Trends in Neurosciences.

[9]  Rudolf Nieuwenhuys,et al.  Comparative Neuroanatomy: Place, Principles and Programme , 1998 .

[10]  G. Luppino,et al.  Parietofrontal circuits: parallel channels for sensory-motor integrations. , 2000, Advances in neurology.

[11]  Perry L. Miller,et al.  Neuronal database integration: the Senselab EAV data model , 1999, AMIA.

[12]  Leah Krubitzer,et al.  Arealization of the Neocortex in Mammals: Genetic and Epigenetic Contributions to the Phenotype , 2000, Brain, Behavior and Evolution.

[13]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[14]  W Hodos,et al.  Evolution of sensory pathways in vertebrates. , 1997, Brain, behavior and evolution.

[15]  D. Pandya,et al.  Intrinsic connections and architectonics of posterior parietal cortex in the rhesus monkey , 1982, The Journal of comparative neurology.

[16]  D. V. van Essen,et al.  Mapping of architectonic subdivisions in the macaque monkey, with emphasis on parieto‐occipital cortex , 2000, The Journal of comparative neurology.

[17]  K Zilles,et al.  Coordinate-independent mapping of structural and functional data by objective relational transformation (ORT). , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[18]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[19]  W Hodos,et al.  The Scala naturae revisited: evolutionary scales and anagenesis in comparative psychology. , 1991, Journal of comparative psychology.

[20]  Amanda Bischoff-Grethe,et al.  Brain Models on the Web and the Need for Summary Data , 2001 .

[21]  Michael A. Arbib,et al.  The NeuroHomology Database: An Online KMS for Handling and Evaluation of the Neurobiological Information , 2003 .

[22]  Michael A. Arbib,et al.  NeuroInformatics: The Issues , 2001 .

[23]  J Botar,et al.  [Evolution of the vertebrate nervous system]. , 1971, Verhandlungen der Anatomischen Gesellschaft.

[24]  Larry W Swanson,et al.  From gene networks to brain networks , 2003, Nature Neuroscience.

[25]  David M. Williams,et al.  Homology and Systematics , 2008 .

[26]  Michael A. Arbib,et al.  Neural homologies: principles, databases and modeling , 2002 .

[27]  L. W. Swanson,et al.  A method for tracing biochemically defined pathways in the central nervous system using combined fluorescence retrograde transport and immunohistochemical techniques , 1981, Brain Research.

[28]  A. Butler,et al.  The evolution of the dorsal thalamus of jawed vertebrates, including mammals: Cladistic analysis and a new hypothesis , 1994, Brain Research Reviews.

[29]  K. Rockland,et al.  Inferior parietal lobule projections to the presubiculum and neighboring ventromedial temporal cortical areas , 2000, The Journal of comparative neurology.

[30]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[31]  Robert L. Carroll,et al.  Vertebrate Paleontology and Evolution , 1988 .

[32]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[33]  L. V. Van Valen,et al.  Homology and causes , 1982, Journal of morphology.

[34]  G. Rizzolatti,et al.  Afferent and efferent projections of the inferior area 6 in the macaque monkey , 1986, The Journal of comparative neurology.

[35]  J. I. Johnson,et al.  Phylogeny through brain traits: trees generated by neural characters. , 1983, Brain, behavior and evolution.

[36]  G. Striedter,et al.  Homology in the nervous system: of characters, embryology and levels of analysis. , 1999, Novartis Foundation symposium.

[37]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[38]  Deepak N. Pandya,et al.  Role of Architectonics and Connections in the Study of Primate Brain Evolution , 1982 .

[39]  G. Nelson,et al.  3 – HOMOLOGY AND SYSTEMATICS , 1994 .

[40]  D. Pandya,et al.  Architecture and frontal cortical connections of the premotor cortex (area 6) in the rhesus monkey , 1987, The Journal of comparative neurology.

[41]  M. Young,et al.  Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[42]  W. Hodos,et al.  The concept of homology and the evolution of the nervous system. , 1970, Brain, behavior and evolution.

[43]  J. Kaas,et al.  Microelectrode maps, myeloarchitecture, and cortical connections of three somatotopically organized representations of the body surface in the parietal cortex of squirrels , 1986, The Journal of comparative neurology.

[44]  C Galletti,et al.  Superior area 6 afferents from the superior parietal lobule in the macaque monkey , 1998, The Journal of comparative neurology.

[45]  M Berke,et al.  The Issues , 2002, Hospitals.

[46]  G. Rizzolatti,et al.  Patterns of cytochrome oxidase activity in the frontal agranular cortex of the macaque monkey , 1985, Behavioural Brain Research.

[47]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[48]  Charles R. Gerfen,et al.  [13] - Phaseolus vulgaris Leucoagglutinin Anterograde Axonal Transport Technique , 1990 .

[49]  G. Rizzolatti,et al.  Architecture of superior and mesial area 6 and the adjacent cingulate cortex in the macaque monkey , 1991, The Journal of comparative neurology.

[50]  Michael J. Sanderson,et al.  Homoplasy. The Recurrence of Similarity in Evolution. , 1997 .

[51]  Khashayar Farsad,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 1996, The Yale Journal of Biology and Medicine.

[52]  M. A. O'Neil,et al.  The connectional organization of the cortico-thalamic system of the cat. , 1999, Cerebral cortex.

[53]  Timos K. Sellis,et al.  Qualitative representation of spatial knowledge in two-dimensional space , 1994, The VLDB Journal.

[54]  E. Wiley Phylogenetics: The Theory and Practice of Phylogenetic Systematics , 1981 .

[55]  M. Egenhofer,et al.  Point-Set Topological Spatial Relations , 2001 .

[56]  M. Young,et al.  Computational analysis of functional connectivity between areas of primate cerebral cortex. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[57]  Iwona Stepniewska,et al.  Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32 , 1997, Brain Research.

[58]  R. Northcutt,et al.  Evolution of the Vertebrate Central Nervous System: Patterns and Processes , 1984 .

[59]  G Rizzolatti,et al.  The classic supplementary motor area is formed by two independent areas. , 1996, Advances in neurology.

[60]  W. Krieg Connections of the cerebral cortex I. The Albino Rat. C. Extrinsic connections , 1947 .

[61]  Larry W. Swanson,et al.  Brain Maps: Structure of the Rat Brain , 1992 .

[62]  W. Krieg Connections of the cerebral cortex. I. The albino rat. A. Topography of the cortical areas , 1946 .

[63]  Michael A. Arbib,et al.  Summary Databases and Model Repositories , 2001 .

[64]  Brita Robertson,et al.  Use of Retrograde Fluorescent Tracers in Combination with Immunohistochemical Methods , 1989 .

[65]  W. Hodos,et al.  Comparative Vertebrate Neuroanatomy: Evolution and Adaptation , 2005 .

[66]  Larry W. Swanson,et al.  Interactive Brain Maps and Atlases , 2001 .

[67]  I. H. Coriat,et al.  Histological Studies on the Localization of Cerebral Function , 1906 .

[68]  Brian K. Hall,et al.  Homology: The hierarchical basis of comparative biology , 1994 .

[69]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[70]  A. Reiner,et al.  Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia. , 1995, Brain, behavior and evolution.

[71]  Michael A. Arbib,et al.  Computing the brain : a guide to neuroinformatics , 2001 .

[72]  Douglas M. Bowden,et al.  NeuroNames 2002 , 2003, Neuroinformatics.

[73]  G. J. Romanes,et al.  The Neocortex of Macaca mulatta , 1948 .

[74]  L A Krubitzer,et al.  How does evolution build a complex brain? , 2000, Novartis Foundation symposium.

[75]  R L Reep,et al.  Phylogeny through brain traits: more characters for the analysis of mammalian evolution. , 1994, Brain, behavior and evolution.

[76]  D. N. Pandya,et al.  Further observations on parieto-temporal connections in the rhesus monkey , 2004, Experimental Brain Research.

[77]  Max J. Egenhofer,et al.  Object-Oriented Modeling for GIS , 2003 .

[78]  J. Kaas,et al.  Convergences in the Modular and Areal Organization of the Forebrain of Mammals: Implications for the Reconstruction of Forebrain Evolution , 2002, Brain, Behavior and Evolution.

[79]  J. McKENDRICK,et al.  The Central Nervous System of Vertebrates , 1909, Nature.

[80]  L. Swanson The Rat Brain in Stereotaxic Coordinates, George Paxinos, Charles Watson (Eds.). Academic Press, San Diego, CA (1982), vii + 153, $35.00, ISBN: 0 125 47620 5 , 1984 .

[81]  Gully A. P. C. Burns,et al.  Knowledge Mechanics and the Neuroscholar Project: A New Approach to Neuroscientific Theory , 2001 .

[82]  Douglas M. Bowden,et al.  BrainInfo: An Online Interactive Brain Atlas and Nomenclature , 2003 .

[83]  Jon H. Kaas,et al.  The emergence and evolution of mammalian neocortex , 1995, Trends in Neurosciences.

[84]  R. F. Martin,et al.  Chapter I A digital Rosetta stone for primate brain terminology , 1997 .

[85]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[86]  Alan Peters,et al.  Cellular components of the cerebral cortex , 1984 .

[87]  D. Pandya,et al.  Cingulate cortex of the rhesus monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[88]  Klaas E. Stephan,et al.  A Formal Approach to the Translation of Cortical Maps , 1998 .

[89]  Kiisa C. Nishikawa,et al.  Convergence: Obstacle or Opportunity? , 2002, Brain, Behavior and Evolution.

[90]  William Hodos,et al.  The Scala naturae revisited: evolutionary scales and anagenesis in comparative psychology. , 1991, Journal of comparative psychology.

[91]  G A Burns,et al.  Knowledge management of the neuroscientific literature: the data model and underlying strategy of the NeuroScholar system. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[92]  Bertram Ludäscher,et al.  Towards a federated neuroscientific knowledge management system using brain atlases , 2001, Neurocomputing.

[93]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[94]  G. Rizzolatti,et al.  The Organization of the Frontal Motor Cortex. , 2000, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[95]  J. Chason The Isocortex of Man , 1952 .

[96]  P H Harvey,et al.  Macroevolutionary inferences from primate phylogeny , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[97]  Michael A. Arbib,et al.  The NeuroHomology database , 2001, Neurocomputing.

[98]  D. J. Felleman,et al.  Cortical connections of areas V3 and VP of macaque monkey extrastriate visual cortex , 1997, The Journal of comparative neurology.

[99]  Klaas E. Stephan,et al.  Connectional characteristics of areas in Walker's map of primate prefrontal cortex , 2001, Neurocomputing.

[100]  Douglas M. Bowden,et al.  NeuroNames Brain Hierarchy , 1995, NeuroImage.

[101]  G. Rizzolatti,et al.  The organization of the cortical motor system: new concepts. , 1998, Electroencephalography and clinical neurophysiology.

[102]  A. Butler,et al.  Levels of organization and the evolution of isocortex , 1996, Trends in Neurosciences.

[103]  H. Kuypers,et al.  Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies , 1979, Neuroscience Letters.

[104]  Orlando J. Castejón,et al.  The Basket Cells , 2003 .

[105]  J. Kaas,et al.  The evolution of isocortex. , 1995, Brain, behavior and evolution.