Using collective variables to drive molecular dynamics simulations

A software framework is introduced that facilitates the application of biasing algorithms to collective variables of the type commonly employed to drive massively parallel molecular dynamics (MD) simulations. The modular framework that is presented enables one to combine existing collective variables into new ones, and combine any chosen collective variable with available biasing methods. The latter include the classic time-dependent biases referred to as steered MD and targeted MD, the temperature-accelerated MD algorithm, as well as the adaptive free-energy biases called metadynamics and adaptive biasing force. The present modular software is extensible, and portable between commonly used MD simulation engines.

[1]  Nicos Martys,et al.  Velocity Verlet algorithm for dissipative-particle-dynamics-based models of suspensions , 1999 .

[2]  E. Vanden-Eijnden,et al.  A temperature accelerated method for sampling free energy and determining reaction pathways in rare events simulations , 2006 .

[3]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[4]  D. Case,et al.  Exploring protein native states and large‐scale conformational changes with a modified generalized born model , 2004, Proteins.

[5]  A. Laio,et al.  A bias-exchange approach to protein folding. , 2007, The journal of physical chemistry. B.

[6]  Andrew E. Torda,et al.  Local elevation: A method for improving the searching properties of molecular dynamics simulation , 1994, J. Comput. Aided Mol. Des..

[7]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[8]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[9]  Wataru Shinoda,et al.  Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants , 2007 .

[10]  Albert C. Pan,et al.  Finding transition pathways using the string method with swarms of trajectories. , 2008, The journal of physical chemistry. B.

[11]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[12]  K. Dill,et al.  Using quaternions to calculate RMSD , 2004, J. Comput. Chem..

[13]  Manish Parashar,et al.  Asynchronous replica exchange for molecular simulations , 2008, J. Comput. Chem..

[14]  Wei Yang,et al.  Practically Efficient and Robust Free Energy Calculations: Double-Integration Orthogonal Space Tempering. , 2012, Journal of chemical theory and computation.

[15]  David N. LeBard,et al.  Multiple binding sites for the general anesthetic isoflurane identified in the nicotinic acetylcholine receptor transmembrane domain , 2010, Proceedings of the National Academy of Sciences.

[16]  K. Schulten,et al.  Molecular dynamics study of unbinding of the avidin-biotin complex. , 1997, Biophysical journal.

[17]  E. Vanden-Eijnden,et al.  String method for the study of rare events , 2002, cond-mat/0205527.

[18]  E. Vanden-Eijnden,et al.  Large-scale conformational sampling of proteins using temperature-accelerated molecular dynamics , 2010, Proceedings of the National Academy of Sciences.

[19]  Michele Cascella,et al.  A Nonradial Coarse-Grained Potential for Proteins Produces Naturally Stable Secondary Structure Elements. , 2010, Journal of chemical theory and computation.

[20]  R. Hegger,et al.  Dihedral angle principal component analysis of molecular dynamics simulations. , 2007, The Journal of chemical physics.

[21]  Gabriel Stoltz,et al.  Computation of free energy profiles with parallel adaptive dynamics. , 2007, The Journal of chemical physics.

[22]  Christophe Chipot,et al.  Standard binding free energies from computer simulations: What is the best strategy? , 2013, Journal of chemical theory and computation.

[23]  C. Dellago,et al.  Transition path sampling and the calculation of rate constants , 1998 .

[24]  Irwin Oppenheim,et al.  Statistical Mechanical Theory of Transport Processes. VII. The Coefficient of Thermal Conductivity of Monatomic Liquids , 1954 .

[25]  Massimiliano Bonomi,et al.  PLUMED: A portable plugin for free-energy calculations with molecular dynamics , 2009, Comput. Phys. Commun..

[26]  G. Torrie,et al.  Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella sampling , 1977 .

[27]  G. Ciccotti,et al.  Constrained reaction coordinate dynamics for the simulation of rare events , 1989 .

[28]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[29]  Richard A Friesner,et al.  Serial replica exchange. , 2007, The journal of physical chemistry. B.

[30]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[31]  C. Chipot,et al.  Overcoming free energy barriers using unconstrained molecular dynamics simulations. , 2004, The Journal of chemical physics.

[32]  J. Mongan,et al.  Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. , 2004, The Journal of chemical physics.

[33]  James M Tour,et al.  Molecular Dynamics of Surface-Moving Thermally Driven Nanocars. , 2008, Journal of chemical theory and computation.

[34]  P. Krüger,et al.  Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. , 1994, Journal of molecular graphics.

[35]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[36]  W. D. Otter,et al.  Thermodynamic integration of the free energy along a reaction coordinate in Cartesian coordinates , 2000 .

[37]  A. Voter A method for accelerating the molecular dynamics simulation of infrequent events , 1997 .

[38]  D. Rapaport,et al.  Molecular dynamics simulation using quaternions , 1985 .

[39]  Beijing Beijing,et al.  IEEE International Conference on Mechatronics and Automation , 2015 .

[40]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[41]  W. DeGrado,et al.  A thermodynamic scale for the helix-forming tendencies of the commonly occurring amino acids. , 1990, Science.

[42]  M. P. Neal,et al.  Time reversible and symplectic integrators for molecular dynamics simulations of rigid molecules. , 2005, The Journal of chemical physics.

[43]  S. Takada,et al.  On the Hamiltonian replica exchange method for efficient sampling of biomolecular systems: Application to protein structure prediction , 2002 .

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  W. Kabsch A discussion of the solution for the best rotation to relate two sets of vectors , 1978 .

[46]  Nicholas M. Glykos,et al.  Software news and updates carma: A molecular dynamics analysis program , 2006, J. Comput. Chem..

[47]  H. Berendsen,et al.  Essential dynamics of proteins , 1993, Proteins.

[48]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[49]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[50]  P. Kollman,et al.  A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules , 1995 .

[51]  Eric Darve,et al.  Adaptive biasing force method for scalar and vector free energy calculations. , 2008, The Journal of chemical physics.

[52]  Christophe Chipot,et al.  Exploring Multidimensional Free Energy Landscapes Using Time-Dependent Biases on Collective Variables. , 2010, Journal of chemical theory and computation.

[53]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[54]  P. Nguyen,et al.  Energy landscape of a small peptide revealed by dihedral angle principal component analysis , 2004, Proteins.

[55]  Chris Neale,et al.  Simulated Tempering Distributed Replica Sampling, Virtual Replica Exchange, and Other Generalized-Ensemble Methods for Conformational Sampling. , 2009, Journal of chemical theory and computation.

[56]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[57]  R. Elber,et al.  Computing time scales from reaction coordinates by milestoning. , 2004, The Journal of chemical physics.

[58]  B. Roux,et al.  Computations of standard binding free energies with molecular dynamics simulations. , 2009, The journal of physical chemistry. B.

[59]  Eric F Darve,et al.  Calculating free energies using average force , 2001 .

[60]  Y. Sugita,et al.  Replica-exchange molecular dynamics method for protein folding , 1999 .

[61]  Benoît Roux,et al.  Simulating electron spin resonance spectra of nitroxide spin labels from molecular dynamics and stochastic trajectories. , 2008, The Journal of chemical physics.

[62]  Wei Yang,et al.  Random walk in orthogonal space to achieve efficient free-energy simulation of complex systems , 2008, Proceedings of the National Academy of Sciences.

[63]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[64]  A. Laio,et al.  Free-energy landscape for beta hairpin folding from combined parallel tempering and metadynamics. , 2006, Journal of the American Chemical Society.

[65]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Alessandro Laio,et al.  Efficient exploration of reactive potential energy surfaces using Car-Parrinello molecular dynamics. , 2003, Physical review letters.

[67]  Kostas Daniilidis,et al.  Hand-Eye Calibration Using Dual Quaternions , 1999, Int. J. Robotics Res..

[68]  A. Laio,et al.  Efficient reconstruction of complex free energy landscapes by multiple walkers metadynamics. , 2006, The journal of physical chemistry. B.

[69]  M. Tuckerman,et al.  An Adiabatic Molecular Dynamics Method for the Calculation of Free Energy Profiles , 2002 .

[70]  Thomas F. Miller,et al.  Symplectic quaternion scheme for biophysical molecular dynamics , 2002 .

[71]  G. Ciccotti,et al.  Blue moon sampling, vectorial reaction coordinates, and unbiased constrained dynamics. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[72]  Grubmüller,et al.  Predicting slow structural transitions in macromolecular systems: Conformational flooding. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[73]  Y. Sugita,et al.  Multidimensional replica-exchange method for free-energy calculations , 2000, cond-mat/0009120.

[74]  T. Lelièvre,et al.  Free Energy Computations: A Mathematical Perspective , 2010 .