Ex-Vivo Trans-Corneal and Trans-Scleral Diffusion Studies with Ocular Formulations of Glutathione as an Antioxidant Treatment for Ocular Diseases

Exposure to sunlight and contact with atmospheric oxygen makes the eye particularly susceptible to oxidative stress, which can potentially produce cellular damage. In physiological conditions, there are several antioxidant defense mechanisms within the eye. Glutathione (GSH) is the most important antioxidant in the eye; GSH deficit has been linked to several ocular pathologies. The aim of this study was to explore the potential for newly developed formulations allowing controlled delivery of antioxidants such as GSH and vitamin C (Vit C) directly to the eye. We have investigated the stability of antioxidants in aqueous solution and assessed ex-vivo the diffusion of GSH through two ocular membranes, namely cornea and sclera, either in solution or included in a semisolid insert. We have also carried out the hen’s egg-chlorioallantoic membrane test (HET-CAM) to evaluate the ocular irritancy of the different antioxidant solutions. Our results showed that GSH is stable for up to 30 days at 4 °C in darkness and it is not an irritant to the eye. The diffusion studies revealed that the manufactured formulation, a semisolid insert containing GSH, could deliver this tripeptide directly to the eye in a sustained manner.

[1]  V. Rodilla,et al.  Micelles of Progesterone for Topical Eye Administration: Interspecies and Intertissues Differences in Ex Vivo Ocular Permeability , 2020, Pharmaceutics.

[2]  K. Fukunaga,et al.  Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in AppNL−G-F/NL−G-F knock-in mice , 2020, Neuropharmacology.

[3]  F. J. Romero,et al.  Nitrosative Stress in Retinal Pathologies: Review , 2019, Antioxidants.

[4]  C. Alvarez‐Lorenzo,et al.  Cyclodextrin–Amphiphilic Copolymer Supramolecular Assemblies for the Ocular Delivery of Natamycin , 2019, Nanomaterials.

[5]  C. Costagliola,et al.  Effects of an antioxidant protective topical formulation on eye exposed to ultraviolet-irradiation: a study in rabbit animal model. , 2018, Physiological research.

[6]  V. Rodilla,et al.  Ex vivo rabbit cornea diffusion studies with a soluble insert of moxifloxacin , 2018, Drug Delivery and Translational Research.

[7]  K. Tekin,et al.  The Effect of Ascorbic Acid (Vitamin C) on Transepithelial Corneal Cross-Linking in Rabbits. , 2017, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[8]  Richard C. Lau,et al.  Phase IIb Study of Intranasal Glutathione in Parkinson’s Disease , 2017, Journal of Parkinson's disease.

[9]  V. Monnier,et al.  Lens glutathione homeostasis: Discrepancies and gaps in knowledge standing in the way of novel therapeutic approaches. , 2017, Experimental eye research.

[10]  A. Urtti,et al.  Pharmacokinetic aspects of retinal drug delivery , 2017, Progress in Retinal and Eye Research.

[11]  E. Vaghefi,et al.  The Association between Dietary Intake of Antioxidants and Ocular Disease , 2017, Diseases.

[12]  Rania M. Hathout,et al.  Optimizing novel penetration enhancing hybridized vesicles for augmenting the in-vivo effect of an anti-glaucoma drug , 2017, Drug delivery.

[13]  Animikh Ray,et al.  A comprehensive insight on ocular pharmacokinetics , 2016, Drug Delivery and Translational Research.

[14]  Hodan Abdshill,et al.  Degenerating photoreceptors in Retinitis pigmentosa models release cGMP. A way of self protection , 2016 .

[15]  F. J. Romero,et al.  Alterations in glutamate cysteine ligase content in the retina of two retinitis pigmentosa animal models. , 2016, Free radical biology & medicine.

[16]  F. J. Romero,et al.  Neuroprotective actions of progesterone in an in vivo model of retinitis pigmentosa. , 2015, Pharmacological research.

[17]  M. V. Balashova,et al.  Sterilization of Ocular Medical Inserts with Immobilized Proteins , 2015, Pharmaceutical Chemistry Journal.

[18]  Louise van der Weerd,et al.  Enhanced glutathione PEGylated liposomal brain delivery of an anti-amyloid single domain antibody fragment in a mouse model for Alzheimer's disease. , 2015, Journal of controlled release : official journal of the Controlled Release Society.

[19]  J. Araiz,et al.  Effect of glutathione ethyl ester, lipoic acid and progesterone on photoreceptor survival in the retina of rd10 mice , 2014 .

[20]  J. G. Souza,et al.  Topical delivery of ocular therapeutics: carrier systems and physical methods , 2014, The Journal of pharmacy and pharmacology.

[21]  Angelique van den Heuvel,et al.  Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood–brain barrier in rats , 2014, Journal of drug targeting.

[22]  P. Donaldson,et al.  Antioxidant Delivery Pathways in the Anterior Eye , 2013, BioMed research international.

[23]  K. Kaarniranta,et al.  Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD) , 2013, Biogerontology.

[24]  M. Glomb,et al.  Maillard degradation pathways of vitamin C. , 2013, Angewandte Chemie.

[25]  J. Cullen,et al.  Ascorbic acid: chemistry, biology and the treatment of cancer. , 2012, Biochimica et biophysica acta.

[26]  D. K. Majumdar,et al.  Design and evaluation of moxifloxacin hydrochloride ocular inserts , 2012, Acta pharmaceutica.

[27]  Meng-Er Huang,et al.  Glutathione Degradation Is a Key Determinant of Glutathione Homeostasis* , 2011, The Journal of Biological Chemistry.

[28]  P. Wiedemann,et al.  Müller Glial Cells in Retinal Disease , 2011, Ophthalmologica.

[29]  A. Mitra,et al.  Ocular Drug Delivery , 2010, The AAPS Journal.

[30]  S. Majumdar,et al.  Passive asymmetric transport of hesperetin across isolated rabbit cornea. , 2010, International journal of pharmaceutics.

[31]  G. Garg,et al.  Ocular inserts — Advancement in therapy of eye diseases , 2010, Journal of advanced pharmaceutical technology & research.

[32]  F. J. Romero,et al.  Antioxidants rescue photoreceptors in rd1 mice: Relationship with thiol metabolism. , 2010, Free radical biology & medicine.

[33]  Ying Chen,et al.  Antioxidant defenses in the ocular surface. , 2009, The ocular surface.

[34]  D. Meyer,et al.  In Vitro Transcorneal Diffusion of the Antimicrobial Macrolides Azithromycin and Clarithromycin and the Impact on Microbial Keratitis , 2009, Cornea.

[35]  S. Majumdar,et al.  Transcorneal Permeation of l- and d-Aspartate Ester Prodrugs of Acyclovir: Delineation of Passive Diffusion Versus Transporter Involvement , 2009, Pharmaceutical Research.

[36]  E. Arnal,et al.  Antioxidants Reduce Cell Death in a Model of Retinitis Pigmentosa: Relationship With Glutathione Metabolism , 2009 .

[37]  N. Ballatori,et al.  Plasma membrane glutathione transporters and their roles in cell physiology and pathophysiology. , 2009, Molecular aspects of medicine.

[38]  Eberhart Zrenner,et al.  Photoreceptor Cell Death Mechanisms in Inherited Retinal Degeneration , 2008, Molecular Neurobiology.

[39]  R. Saha,et al.  Effect of pH and Formulation Variables on In Vitro Transcorneal Permeability of Flurbiprofen: A Technical Note , 2008, AAPS PharmSciTech.

[40]  A. Mundada,et al.  Formulation and Evaluation of Ciprofloxacin Hydrochloride Soluble Ocular Drug Insert , 2008, Current eye research.

[41]  N. Wang,et al.  Transport Barriers in Transscleral Drug Delivery for Retinal Diseases , 2007, Ophthalmic Research.

[42]  T. Veen,et al.  Significant photoreceptor rescue by treatment with a combination of antioxidants in an animal model for retinal degeneration , 2007, Neuroscience.

[43]  A. Ludwig,et al.  Ocular drug delivery: nanomedicine applications. , 2007, Nanomedicine.

[44]  A. Mitra,et al.  Corneal absorption and anterior chamber pharmacokinetics of dipeptide monoester prodrugs of ganciclovir (GCV): in vivo comparative evaluation of these prodrugs with Val-GCV and GCV in rabbits. , 2006, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[45]  Veli-Pekka Ranta,et al.  Transscleral drug delivery to the posterior eye: prospects of pharmacokinetic modeling. , 2006, Advanced drug delivery reviews.

[46]  A. Mundada,et al.  Design and Evaluation of Soluble Ocular Drug Insert for Controlled Release of Ciprofloxacin Hydrochloride , 2006, Drug development and industrial pharmacy.

[47]  Z. Lee,et al.  Pharmacokinetics of Glutathione and Its Metabolites in Normal Subjects , 2005, Journal of Korean medical science.

[48]  Mark R Prausnitz,et al.  Model of transient drug diffusion across cornea. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[49]  F. Shang,et al.  Vitamin C and vitamin E restore the resistance of GSH-depleted lens cells to H2O2. , 2003, Free radical biology & medicine.

[50]  P. van der Bijl,et al.  Comparative permeability of human and rabbit corneas to cyclosporin and tritiated water. , 2002, Journal of ocular pharmacology and therapeutics : the official journal of the Association for Ocular Pharmacology and Therapeutics.

[51]  David A. Bader,et al.  Facial Expression Recognition System using Statistical Feature and Neural Network , 2012 .

[52]  J. McLaren,et al.  Ascorbic acid content of human corneal epithelium. , 2000, Investigative ophthalmology & visual science.

[53]  M. Malone,et al.  Glutathione in Health and Disease: Pharmacotherapeutic Issues , 1995, The Annals of pharmacotherapy.

[54]  B. S. Winkler,et al.  The redox couple between glutathione and ascorbic acid: a chemical and physiological perspective. , 1994, Free radical biology & medicine.

[55]  H. Sies Oxidative stress: from basic research to clinical application. , 1991, The American journal of medicine.

[56]  D. J. Reed,et al.  High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides. , 1980, Analytical biochemistry.

[57]  V. Kalevar Donor corneae for preservation. A modified dissection technique. , 1968, The British journal of ophthalmology.

[58]  I. A. Rose Glutathione , 1960, Nature.

[59]  R. Sinha,et al.  Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function , 2018, European Journal of Clinical Nutrition.

[60]  A. Thakur,et al.  Glutathione transporters. , 2013, Biochimica et biophysica acta.

[61]  O. Mimura,et al.  Preparation of ophthalmic formulations containing cilostazol as an anti-glaucoma agent and improvement in its permeability through the rabbit cornea. , 2010, Journal of oleo science.

[62]  K. Gnanaprakash,et al.  DESIGN AND EVALUATION OF DICLOFENAC SODIUM OCUSERT , 2009 .

[63]  F. Javier,et al.  Antioxidant therapy in retinitis pigmentosa , 2009 .

[64]  R. Nema,et al.  An Insight into Ophthalmic Drug Delivery System , 2009 .

[65]  B. Halliwell,et al.  The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism , 2004, Planta.

[66]  I. Rodriguez,et al.  Sistemas de liberación Bioadhesivos , 2000 .

[67]  H. Spielmann,et al.  A national validation project of alternative methods to the Draize rabbit eye test. , 1990, Toxicology in vitro : an international journal published in association with BIBRA.

[68]  D. Lidgate,et al.  In Vitro Rabbit Corneal Permeability Study of Ketorolac, Tromethamine, a non-Steroidal Anti-Inflammatory Agent , 1986 .

[69]  T. Aw,et al.  The regulation of hepatic glutathione. , 1985, Annual review of pharmacology and toxicology.

[70]  R. Meyer,et al.  Glutathione in the aqueous humor of human and other species. , 1980, Investigative ophthalmology & visual science.

[71]  A. Meister,et al.  Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. , 1976, Annual review of biochemistry.