Synthesis of ZnWO4@MWO4 (M = Mn, Fe) Core−Shell Nanorods with Optical and Antiferromagnetic Property by Oriented Attachment Mechanism

Uniform core−shell heterostructured ZnWO4@MWO4 (M = Mn, Fe) nanorods with both optical and antiferromagnetic properties have been synthesized by a simple refluxing method under mild conditions in which the crystallization event of MWO4 happened on the backbone of ZnWO4 single crystalline nanorods in a ligand-free system. ZnWO4 nanorod-directed oriented aggregation mechanism has been clearly observed for the formation of heterostructured ZnWO4@MWO4 (M = Mn, Fe) nanorods. The shell thickness of MWO4 (M = Mn, Fe) could be tuned by changing the molar ratio of these raw materials. UV−visible absorption spectra and photoluminescence (PL) spectra of the as-prepared ZnWO4@MWO4 (M = Mn, Fe) core−shell nanorods show the similar “red-shift” trend, which can be ascribed to the influences of the out-layered shell. The ZnWO4@MWO4 (M = Mn, Fe) nanorods displayed both optical and antiferromagnetic properties. The result demonstrated that the multifunctional anisotropic nanostructures with a heteroshell could be synthesiz...

[1]  E. Longo,et al.  Oriented attachment: an effective mechanism in the formation of anisotropic nanocrystals. , 2005, The journal of physical chemistry. B.

[2]  Kyung-Sang Cho,et al.  Designing PbSe nanowires and nanorings through oriented attachment of nanoparticles. , 2005, Journal of the American Chemical Society.

[3]  Young Woon Kim,et al.  Synthesis of quantum-sized cubic ZnS nanorods by the oriented attachment mechanism. , 2005, Journal of the American Chemical Society.

[4]  Fumin Wang,et al.  Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "oriented attachment" mechanism. , 2004, Journal of the American Chemical Society.

[5]  Shuhong Yu,et al.  Nanorod-direct oriented attachment growth and promoted crystallization processes evidenced in case of ZnWO4 , 2004 .

[6]  Shuhong Yu,et al.  Selective synthesis and characterization of single-crystal silver molybdate/tungstate nanowires by a hydrothermal process. , 2004, Chemistry.

[7]  E. Longo,et al.  Crystal growth in colloidal tin oxide nanocrystals induced by coalescence at room temperature , 2003 .

[8]  Shuhong Yu,et al.  General Synthesis of Single‐Crystal Tungstate Nanorods/Nanowires: A Facile, Low‐Temperature Solution Approach , 2003 .

[9]  W. Webb,et al.  Water-Soluble Quantum Dots for Multiphoton Fluorescence Imaging in Vivo , 2003, Science.

[10]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[11]  Feng Huang,et al.  Two-Stage Crystal-Growth Kinetics Observed during Hydrothermal Coarsening of Nanocrystalline ZnS , 2003 .

[12]  Charles M. Lieber,et al.  Epitaxial core–shell and core–multishell nanowire heterostructures , 2002, Nature.

[13]  P. Kozma,et al.  Radiation damage of PbWO4 crystals due to irradiation by 60Co gamma rays , 2002 .

[14]  P. Yang,et al.  Functional Bimorph Composite Nanotapes , 2002 .

[15]  Hongjie Dai,et al.  Carbon nanotubes: synthesis, integration, and properties. , 2002, Accounts of chemical research.

[16]  Malcolm L. H. Green,et al.  Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes , 2002 .

[17]  Jae Hee Song,et al.  Inorganic semiconductor nanowires: rational growth, assembly, and novel properties. , 2002, Chemistry.

[18]  P. Searson,et al.  Epitaxial Assembly in Aged Colloids , 2001 .

[19]  A. Alivisatos BIOMINERALIZATION: Enhanced: Naturally Aligned Nanocrystals , 2000 .

[20]  J. Banfield,et al.  Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. , 2000, Science.

[21]  Wojtek Wlodarski,et al.  Comparative study on micromorphology and humidity sensitive properties of thin-film and thick-film humidity sensors based on semiconducting MnWO4 , 2000 .

[22]  Reuven Chen,et al.  Phototransferred Thermoluminescence of CaWO4 Crystals , 1999 .

[23]  Jillian F. Banfield,et al.  Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania , 1999 .

[24]  T. Moritz,et al.  Nanostructuring Titania: Control over Nanocrystal Structure, Size, Shape, and Organization , 1999 .

[25]  Park,et al.  Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors. , 1998, Journal of colloid and interface science.

[26]  K. Onuma,et al.  Cluster Growth Model for Hydroxyapatite , 1998 .

[27]  Banfield,et al.  Imperfect oriented attachment: dislocation generation in defect-free nanocrystals , 1998, Science.

[28]  M. Bawendi,et al.  (CdSe)ZnS Core-Shell Quantum Dots - Synthesis and Characterization of a Size Series of Highly Luminescent Nanocrystallites , 1997 .

[29]  S. Fan,et al.  Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction , 1997 .

[30]  H. Ehrenberg,et al.  Magnetic phase diagrams of , 1997 .

[31]  Charles M. Lieber,et al.  Synthesis and characterization of carbide nanorods , 1995, Nature.

[32]  Q. Zhuang,et al.  Laser photochemical ablation of CdWO4 studied with the time‐of‐flight mass spectrometric technique , 1995 .

[33]  C. Serna,et al.  The Growth Mechanism of a-Fe 2O 3 Ellipsoidal Particles in Solution , 1995 .

[34]  Hong Wang,et al.  The line shape and zero-phonon line of the luminescence spectrum from zinc tungstate single crystals , 1994 .

[35]  Vogt,et al.  Magnetic phase transitions of MnWO4 studied by the use of neutron diffraction. , 1993, Physical review. B, Condensed matter.

[36]  C. Brinker,et al.  Growth Mechanisms of Iron Oxide Particles of Differing Morphologies from the Forced Hydrolysis of Ferric Chloride Solutions , 1993 .

[37]  Zhang,et al.  Temperature dependence of the polarized Raman spectra of ZnWO4 single crystals. , 1992, Physical review. B, Condensed matter.

[38]  R. Ansorge,et al.  Optical fibre readout and performance of small scintillating crystals for a fine-grained gamma detector , 1989 .

[39]  H. Moser,et al.  Scintillation properties of ZnWO4 , 1985 .

[40]  T. Oi,et al.  Scintillation study of ZnWO4 single crystals , 1980 .

[41]  F. Wegner On the magnetic phase diagram of (Mn, Fe)WO4 wolframite , 1973 .

[42]  H. Dachs,et al.  Investigations concerning the coexistence of two magnetic phases in mixed crystals (Fe, Mn)WO4 , 1973 .

[43]  Dinçer Ülkü Untersuchungen zur Kristallstruktur und magnetischen Struktur des Ferberits FeWO4 , 1967 .

[44]  E. Stoll,et al.  Magnetic structure of manganesetungstate MnWO4 at 4.2°K , 1966 .

[45]  L. G. Uitert,et al.  Zinc Tungstates for Microwave Maser Applications , 1962 .