Recent development in computer simulations of lipid bilayers

Rapid development of computer power during the last decade has made molecular simulations of lipid bilayers feasible for many research groups, which, together with the growing general interest in investigations of these very important biological systems has lead to tremendous increase of the number of research on the computational modeling of lipid bilayers. In this review, we give account of the recent progress in computer simulations of lipid bilayers covering mainly the period of the last 5 years, and covering several selected subjects: development of the force fields for lipid bilayer simulations, studies of the role of lipid unsaturation, the effect of cholesterol and other inclusions on properties of the bilayer, and use of coarse-grained models.

[1]  Siewert J. Marrink,et al.  Methodological issues in lipid bilayer simulations , 2003 .

[2]  K. Schulten,et al.  Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase , 1993 .

[3]  Sagar A. Pandit,et al.  Cholesterol surrogates: a comparison of cholesterol and 16:0 ceramide in POPC bilayers. , 2007, Biophysical journal.

[4]  M S Sansom,et al.  Membrane simulations: bigger and better? , 2000, Current opinion in structural biology.

[5]  W. F. D. Bennett,et al.  Study of the benzocaine transfer from aqueous solution to the interior of a biological membrane. , 2009, The journal of physical chemistry. B.

[6]  R. Larson,et al.  The MARTINI Coarse-Grained Force Field: Extension to Proteins. , 2008, Journal of chemical theory and computation.

[7]  Marcus Müller,et al.  Main phase transition in lipid bilayers: Phase coexistence and line tension in a soft, solvent-free, coarse-grained model. , 2010, The Journal of chemical physics.

[8]  B. West,et al.  Coarse-grained simulations of membranes under tension. , 2010, The Journal of chemical physics.

[9]  Alan E Mark,et al.  On the Validation of Molecular Dynamics Simulations of Saturated and cis-Monounsaturated Phosphatidylcholine Lipid Bilayers: A Comparison with Experiment. , 2010, Journal of chemical theory and computation.

[10]  W. Stillwell,et al.  Anticancer properties of oxidation products of docosahexaenoic acid. , 2008, Chemistry and physics of lipids.

[11]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[12]  Klaus Schulten,et al.  Simulations of membrane tubulation by lattices of amphiphysin N-BAR domains. , 2009, Structure.

[13]  J. Czub,et al.  Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. , 2006, Biophysical journal.

[14]  G. Schatz,et al.  Coarse-grained molecular dynamics study of permeability enhancement in DPPC bilayers by incorporation of lysolipid. , 2010, The journal of physical chemistry. B.

[15]  Richard W. Pastor,et al.  Molecular dynamics and Monte Carlo simulations of lipid bilayers , 1994 .

[16]  Klaus Schulten,et al.  Assembly of lipids and proteins into lipoprotein particles. , 2007, The journal of physical chemistry. B.

[17]  M. H. Cheng,et al.  Molecular dynamics simulations of ternary membrane mixture: phosphatidylcholine, phosphatidic acid, and cholesterol. , 2007, The journal of physical chemistry. B.

[18]  Carl-Johan Högberg,et al.  A molecular dynamics investigation of the influence of hydration and temperature on structural and dynamical properties of a dimyristoylphosphatidylcholine bilayer. , 2006, The journal of physical chemistry. B.

[19]  Alexander D. MacKerell,et al.  Molecular-level organization of saturated and polyunsaturated fatty acids in a phosphatidylcholine bilayer containing cholesterol. , 2004, Biochemistry.

[20]  A. L. Rabinovich,et al.  Self-consistent-field modeling of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to molecular dynamics simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  Ilpo Vattulainen,et al.  Coarse-grained model for phospholipid/cholesterol bilayer employing inverse Monte Carlo with thermodynamic constraints. , 2007, The Journal of chemical physics.

[22]  I. Vattulainen,et al.  Molecular mechanism for lipid flip-flops. , 2007, The journal of physical chemistry. B.

[23]  W. Stillwell Docosahexaenoic acid: a most unusual fatty acid. , 2008, Chemistry and physics of lipids.

[24]  Bernard R Brooks,et al.  Rotation of lipids in membranes: molecular dynamics simulation, 31P spin-lattice relaxation, and rigid-body dynamics. , 2008, Biophysical journal.

[25]  I. Vattulainen,et al.  Interplay of unsaturated phospholipids and cholesterol in membranes: effect of the double-bond position. , 2008, Biophysical journal.

[26]  I. Vattulainen,et al.  Influence of cis double-bond parametrization on lipid membrane properties: how seemingly insignificant details in force-field change even qualitative trends. , 2008, The Journal of chemical physics.

[27]  Sagar A. Pandit,et al.  Multiscale simulations of heterogeneous model membranes. , 2009, Biochimica et biophysica acta.

[28]  D. Tieleman,et al.  The MARTINI force field: coarse grained model for biomolecular simulations. , 2007, The journal of physical chemistry. B.

[29]  Reinhard Lipowsky,et al.  VISUALIZING SOFT MATTER: MESOSCOPIC SIMULATIONS OF MEMBRANES, VESICLES AND NANOPARTICLES , 2007 .

[30]  Berend Smit,et al.  Mesoscopic models of biological membranes , 2006 .

[31]  K. Merz Molecular dynamics simulations of lipid bilayers. , 1997, Current opinion in structural biology.

[32]  Ryan W. Benz,et al.  Experimental validation of molecular dynamics simulations of lipid bilayers: a new approach. , 2005, Biophysical journal.

[33]  Eric Jakobsson,et al.  Simulation of the early stages of nano-domain formation in mixed bilayers of sphingomyelin, cholesterol, and dioleylphosphatidylcholine. , 2004, Biophysical journal.

[34]  A. Simopoulos,et al.  Summary of the conference on the health effects of polyunsaturated fatty acids in seafoods. , 1986, The Journal of nutrition.

[35]  R. Böckmann,et al.  1-Alkanols and membranes: a story of attraction. , 2007, Biochimica et biophysica acta.

[36]  Perttu S. Niemelä,et al.  Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine. , 2007, Biophysical journal.

[37]  Eric Jakobsson,et al.  Sphingomyelin-cholesterol domains in phospholipid membranes: atomistic simulation. , 2004, Biophysical journal.

[38]  K V Damodaran,et al.  Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. , 1992, Biochemistry.

[39]  Gregory A Voth,et al.  A multiscale coarse-graining method for biomolecular systems. , 2005, The journal of physical chemistry. B.

[40]  Jamshed Anwar,et al.  The permeability enhancing mechanism of DMSO in ceramide bilayers simulated by molecular dynamics. , 2007, Biophysical journal.

[41]  Alexander D. MacKerell,et al.  An ab initio study on the torsional surface of alkanes and its effect on molecular simulations of alkanes and a DPPC bilayer. , 2005, The journal of physical chemistry. B.

[42]  Tim Salditt,et al.  Short-range order and collective dynamics of DMPC bilayers: a comparison between molecular dynamics simulations, X-ray, and neutron scattering experiments. , 2007, Biophysical journal.

[43]  I. Vattulainen,et al.  Effect of NaCl and KCl on phosphatidylcholine and phosphatidylethanolamine lipid membranes: insight from atomic-scale simulations for understanding salt-induced effects in the plasma membrane. , 2008, The journal of physical chemistry. B.

[44]  S. Shaikh,et al.  Polyunsaturated fatty acids and membrane organization: elucidating mechanisms to balance immunotherapy and susceptibility to infection. , 2008, Chemistry and physics of lipids.

[45]  R. C. Reeder,et al.  A Coarse Grain Model for Phospholipid Simulations , 2001 .

[46]  A. Lyubartsev,et al.  Dynamical and structural properties of charged and uncharged lidocaine in a lipid bilayer. , 2007, Biophysical chemistry.

[47]  Ramasubbu Sankararamakrishnan,et al.  Force field dependence of phospholipid headgroup and acyl chain properties: Comparative molecular dynamics simulations of DMPC bilayers , 2010, J. Comput. Chem..

[48]  Martin A Gundersen,et al.  Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers—in cells and in silico , 2006, Physical biology.

[49]  Roland Faller,et al.  Coarse-grained modeling of lipids. , 2009, Chemistry and physics of lipids.

[50]  D P Tieleman,et al.  A computer perspective of membranes: molecular dynamics studies of lipid bilayer systems. , 1997, Biochimica et biophysica acta.

[51]  G. Peters,et al.  Methodological problems in pressure profile calculations for lipid bilayers. , 2005, The Journal of chemical physics.

[52]  Satyavani Vemparala,et al.  Computational studies on the interactions of inhalational anesthetics with proteins. , 2010, Accounts of chemical research.

[53]  A. Mark,et al.  Coarse grained model for semiquantitative lipid simulations , 2004 .

[54]  Ilpo Vattulainen,et al.  Assessing the Nature of Lipid Raft Membranes , 2007, PLoS Comput. Biol..

[55]  Laxmikant V. Kale,et al.  NAMD2: Greater Scalability for Parallel Molecular Dynamics , 1999 .

[56]  Berk Hess,et al.  GROMACS 3.0: a package for molecular simulation and trajectory analysis , 2001 .

[57]  Siewert J Marrink,et al.  Lipids on the move: simulations of membrane pores, domains, stalks and curves. , 2009, Biochimica et biophysica acta.

[58]  Ning Gu,et al.  Thermodynamics of charged nanoparticle adsorption on charge-neutral membranes: a simulation study. , 2010, The journal of physical chemistry. B.

[59]  Siewert J. Marrink,et al.  Curvature effects on lipid packing and dynamics in liposomes revealed by coarse grained molecular dynamics simulations. , 2009, Physical chemistry chemical physics : PCCP.

[60]  S. Wassall,et al.  Docosahexaenoic acid: membrane properties of a unique fatty acid. , 2003, Chemistry and physics of lipids.

[61]  Klaus Schulten,et al.  Assembly of lipoprotein particles revealed by coarse-grained molecular dynamics simulations. , 2007, Journal of structural biology.

[62]  Alexander D. MacKerell,et al.  Molecular dynamics simulations of nucleic acid-protein complexes. , 2008, Current opinion in structural biology.

[63]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[64]  J Andrew McCammon,et al.  Large conformational changes in proteins: signaling and other functions. , 2010, Current opinion in structural biology.

[65]  Arnau Cordomí,et al.  Effect of ions on a dipalmitoyl phosphatidylcholine bilayer. a molecular dynamics simulation study. , 2008, The journal of physical chemistry. B.

[66]  D. Frenkel,et al.  Molecular dynamics simulations. , 2002, Current opinion in structural biology.

[67]  Alexander Lyubartsev,et al.  Systematic coarse-graining of molecular models by the Newton inversion method. , 2010, Faraday discussions.

[68]  Pedro G. Pascutti,et al.  Molecular dynamics study of biomembrane/local anesthetics interactions , 2009 .

[69]  M. Berkowitz,et al.  The behavior of reorientational correlation functions of water at the water-lipid bilayer interface. , 2006, The Journal of chemical physics.

[70]  Berend Smit,et al.  Effect of cholesterol on the structure of a phospholipid bilayer , 2009, Proceedings of the National Academy of Sciences.

[71]  Dynamics of vesicle formation from lipid droplets: mechanism and controllability. , 2008, The Journal of chemical physics.

[72]  J. Silvius,et al.  Role of cholesterol in lipid raft formation: lessons from lipid model systems. , 2003, Biochimica et biophysica acta.

[73]  P. Escribá,et al.  Interactions of fatty acids with phosphatidylethanolamine membranes: X-ray diffraction and molecular dynamics studies , 2010, Journal of Lipid Research.

[74]  T. Róg,et al.  Cholesterol-sphingomyelin interactions: a molecular dynamics simulation study. , 2006, Biophysical journal.

[75]  S. Marrink,et al.  Location, tilt, and binding: a molecular dynamics study of voltage-sensitive dyes in biomembranes. , 2009, The journal of physical chemistry. B.

[76]  Gregory A. Voth,et al.  Systematic coarse-graining of a multicomponent lipid bilayer. , 2009, The journal of physical chemistry. B.

[77]  S. Feller,et al.  Structure and dynamics of a fluid phase bilayer on a solid support as observed by a molecular dynamics computer simulation. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[78]  D. Valentine,et al.  Omega-3 fatty acids in cellular membranes: a unified concept. , 2004, Progress in lipid research.

[79]  Sagar A. Pandit,et al.  Molecular-dynamics simulation of a ceramide bilayer. , 2006, The Journal of chemical physics.

[80]  Jeremy C. Smith,et al.  A molecular mechanics force field for biologically important sterols , 2005, J. Comput. Chem..

[81]  J. Nagle,et al.  Effect of cholesterol on structural and mechanical properties of membranes depends on lipid chain saturation. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[82]  Alexander L. Rabinovich,et al.  Molecular dynamics study of phosphatidylcholine and diacylglycerolipid bilayers in the liquid crystal phase , 2003, Other Conferences.

[83]  Zhi‐Wu Yu,et al.  Structural characterization on the gel to liquid-crystal phase transition of fully hydrated DSPC and DSPE bilayers. , 2009, The journal of physical chemistry. B.

[84]  S. Marrink,et al.  Stability of asymmetric lipid bilayers assessed by molecular dynamics simulations. , 2009, Journal of the American Chemical Society.

[85]  S. Feller,et al.  Molecular dynamics simulations of lipid bilayers , 2000 .

[86]  H. Berendsen,et al.  Molecular dynamics simulations of a fully hydrated dipalmitoylphosphatidylcholine bilayer with different macroscopic boundary conditions and parameters , 1996 .

[87]  J. Ulander,et al.  Permeation across hydrated DPPC lipid bilayers: simulation of the titrable amphiphilic drug valproic acid. , 2003, Biophysical journal.

[88]  V. Cherezov,et al.  Interaction of cholesterol with a docosahexaenoic acid-containing phosphatidylethanolamine: trigger for microdomain/raft formation? , 2003, Biochemistry.

[89]  Klaus Schulten,et al.  Membrane-bending mechanism of amphiphysin N-BAR domains. , 2009, Biophysical journal.

[90]  K. Gawrisch,et al.  The structure of DHA in phospholipid membranes , 2003, Lipids.

[91]  J. Smith,et al.  Derivation of a molecular mechanics force field for cholesterol , 2004 .

[92]  Friederike Schmid,et al.  Membrane-protein interactions in a generic coarse-grained model for lipid bilayers. , 2008, Biophysical journal.

[93]  M. G. Alinchenko,et al.  Computer simulation study of intermolecular voids in unsaturated phosphatidylcholine lipid bilayers. , 2005, The Journal of chemical physics.

[94]  A. L. Rabinovich,et al.  Interaction of cholesterol-like molecules in polyunsaturated phosphatidylcholine lipid bilayers as revealed by a self-consistent field theory. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[95]  Ole G Mouritsen,et al.  Simulations of a membrane-anchored peptide: structure, dynamics, and influence on bilayer properties. , 2004, Biophysical journal.

[96]  W. V. van Gunsteren,et al.  Molecular dynamics simulations of phospholipid bilayers: Influence of artificial periodicity, system size, and simulation time. , 2005, The journal of physical chemistry. B.

[97]  Mauricio Carrillo-Tripp,et al.  Evidence for a mechanism by which omega-3 polyunsaturated lipids may affect membrane protein function. , 2005, Biochemistry.

[98]  Balázs Jójárt,et al.  Performance of the general amber force field in modeling aqueous POPC membrane bilayers , 2007, J. Comput. Chem..

[99]  H. Berendsen,et al.  A consistent empirical potential for water–protein interactions , 1984 .

[100]  S. Feller,et al.  Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin. , 2005, Current opinion in structural biology.

[101]  M. Hyvönen,et al.  Molecular dynamics simulations of unsaturated lipid bilayers: effects of varying the numbers of double bonds , 2005, European Biophysics Journal.

[102]  S. Piotto,et al.  The significance of lipid composition for membrane activity: new concepts and ways of assessing function. , 2005, Progress in lipid research.

[103]  R. Pastor,et al.  Comparison of the extended isotropic periodic sum and particle mesh Ewald methods for simulations of lipid bilayers and monolayers. , 2009, The journal of physical chemistry. B.

[104]  A. Panagiotopoulos,et al.  Micellization behavior of coarse grained surfactant models. , 2010, The Journal of chemical physics.

[105]  J. Slotte,et al.  Cholesterol interactions with phospholipids in membranes. , 2002, Progress in lipid research.

[106]  Siewert J. Marrink,et al.  The molecular face of lipid rafts in model membranes , 2008, Proceedings of the National Academy of Sciences.

[107]  Siewert J. Marrink,et al.  The binary mixing behavior of phospholipids in a bilayer : A molecular dynamics study , 2004 .

[108]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS SIMULATION OF A BILAYER-MEMBRANE , 1982 .

[109]  Raphael Zidovetzki,et al.  Use of cyclodextrins to manipulate plasma membrane cholesterol content: evidence, misconceptions and control strategies. , 2007, Biochimica et biophysica acta.

[110]  M. Stevens,et al.  Coarse-grained simulations of lipid bilayers. , 2004, The Journal of chemical physics.

[111]  D. Tieleman,et al.  Molecular Dynamics Simulation of a Polyunsaturated Lipid Bilayer Susceptible to Lipid Peroxidation , 2004 .

[112]  Carlos F. Lopez,et al.  Dynamical properties of a hydrated lipid bilayer from a multinanosecond molecular dynamics simulation. , 2001, Biophysical journal.

[113]  O. Edholm,et al.  Effect of Force Field Parameters on Sodium and Potassium Ion Binding to Dipalmitoyl Phosphatidylcholine Bilayers. , 2009, Journal of chemical theory and computation.

[114]  Bernard R Brooks,et al.  Long-range Lennard-Jones and electrostatic interactions in interfaces: application of the isotropic periodic sum method. , 2007, The journal of physical chemistry. B.

[115]  I. Vattulainen,et al.  Membrane potential and electrostatics of phospholipid bilayers with asymmetric transmembrane distribution of anionic lipids. , 2008, The journal of physical chemistry. B.

[116]  M. Jensen,et al.  Reparameterization of all-atom dipalmitoylphosphatidylcholine lipid parameters enables simulation of fluid bilayers at zero tension. , 2007, Biophysical journal.

[117]  I. Vattulainen,et al.  Effects of carbon nanoparticles on lipid membranes: a molecular simulation perspective , 2009 .

[118]  W. Shinoda,et al.  Dynamics of a highly branched lipid bilayer: a molecular dynamics study , 2004 .

[119]  Ning Gu,et al.  Computational investigation of interaction between nanoparticles and membranes: hydrophobic/hydrophilic effect. , 2008, The journal of physical chemistry. B.

[120]  A. Sum,et al.  Molecular characterization of gel and liquid-crystalline structures of fully hydrated POPC and POPE bilayers. , 2007, The journal of physical chemistry. B.

[121]  Siewert J Marrink,et al.  The molecular mechanism of lipid monolayer collapse , 2008, Proceedings of the National Academy of Sciences.

[122]  A. Amadei,et al.  Theoretical-computational modelling of infrared spectra in peptides and proteins: a new frontier for combined theoretical-experimental investigations. , 2010, Current opinion in structural biology.

[123]  W F Drew Bennett,et al.  Molecular view of cholesterol flip-flop and chemical potential in different membrane environments. , 2009, Journal of the American Chemical Society.

[124]  R. Faller,et al.  Examining the contributions of lipid shape and headgroup charge on bilayer behavior. , 2008, Biophysical journal.

[125]  Carl-Johan Högberg,et al.  Modification of the CHARMM force field for DMPC lipid bilayer , 2008, J. Comput. Chem..

[126]  Leonor Saiz,et al.  Computer simulation studies of model biological membranes. , 2002, Accounts of chemical research.

[127]  D Peter Tieleman,et al.  BMC Biochemistry BioMed Central Research article The molecular basis of electroporation , 2004 .

[128]  M. Klein,et al.  United-atom acyl chains for CHARMM phospholipids. , 2008, The journal of physical chemistry. B.

[129]  W G Richards,et al.  Molecular dynamics simulation of a hydrated phospholipid bilayer. , 1994, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[130]  A. A. Gurtovenko Asymmetry of lipid bilayers induced by monovalent salt: atomistic molecular-dynamics study. , 2005, The Journal of chemical physics.

[131]  Dirk Reith,et al.  Deriving effective mesoscale potentials from atomistic simulations , 2002, J. Comput. Chem..

[132]  H. L. Scott,et al.  Modeling the lipid component of membranes. , 2002, Current opinion in structural biology.

[133]  Eric Jakobsson,et al.  An improved united atom force field for simulation of mixed lipid bilayers. , 2009, The journal of physical chemistry. B.

[134]  Gregory A Voth,et al.  Multiscale modeling of biomolecular systems: in serial and in parallel. , 2007, Current opinion in structural biology.

[135]  Friederike Schmid,et al.  A generic model for lipid monolayers, bilayers, and membranes , 2007, Comput. Phys. Commun..

[136]  Gregory A Voth,et al.  Mesoscopic lateral diffusion in lipid bilayers. , 2004, Biophysical journal.

[137]  J. Essex,et al.  Computer simulation of small molecule permeation across a lipid bilayer: dependence on bilayer properties and solute volume, size, and cross-sectional area. , 2004, Biophysical journal.

[138]  Alexander P. Lyubartsev,et al.  Multiscale modeling of lipids and lipid bilayers , 2005, European Biophysics Journal.

[139]  O. Edholm,et al.  The range and shielding of dipole-dipole interactions in phospholipid bilayers. , 2004, Biophysical journal.

[140]  Jonathan W Essex,et al.  A quantitative coarse-grain model for lipid bilayers. , 2008, The journal of physical chemistry. B.

[141]  E. Lindahl,et al.  Membrane proteins: molecular dynamics simulations. , 2008, Current opinion in structural biology.

[142]  C. Mukhopadhyay,et al.  Molecular level investigation of organization in ternary lipid bilayer: a computational approach. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[143]  A. Lyubartsev,et al.  Effect of local anesthetic lidocaine on electrostatic properties of a lipid bilayer. , 2008, Biophysical journal.

[144]  E. Wachtel,et al.  Phospholipid/cholesterol model membranes: formation of cholesterol crystallites. , 2003, Biochimica et biophysica acta.

[145]  Olivier Sperandio,et al.  In silico studies of blood coagulation proteins: from mosaic proteases to nonenzymatic cofactor inhibitors. , 2010, Current opinion in structural biology.

[146]  Sagar A. Pandit,et al.  Complexation of phosphatidylcholine lipids with cholesterol. , 2004, Biophysical journal.

[147]  P. Jedlovszky,et al.  A possible mechanism for pressure reversal of general anaesthetics from molecular simulations , 2007 .

[148]  Roland Faller,et al.  Under the influence of alcohol: the effect of ethanol and methanol on lipid bilayers. , 2006, Biophysical journal.

[149]  Jonathan W. Essex,et al.  Permeation of small molecules through a lipid bilayer: a computer simulation study , 2004 .

[150]  Thomas B Woolf,et al.  Atomistic simulations of biologically realistic transmembrane potential gradients. , 2004, The Journal of chemical physics.

[151]  S. Feller,et al.  Acyl chain conformations in phospholipid bilayers: a comparative study of docosahexaenoic acid and saturated fatty acids. , 2008, Chemistry and physics of lipids.

[152]  H. Vogel,et al.  Distribution of pentachlorophenol in phospholipid bilayers: a molecular dynamics study. , 2004, Biophysical journal.

[153]  Martin Karplus,et al.  Brownian dynamics simulation of a lipid chain in a membrane bilayer , 1988 .

[154]  Sagar A. Pandit,et al.  Cholesterol packing around lipids with saturated and unsaturated chains: a simulation study. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[155]  K. Jørgensen,et al.  Dynamical order and disorder in lipid bilayers. , 1994, Chemistry and physics of lipids.

[156]  M. Hyvönen,et al.  Membrane simulations mimicking acidic pH reveal increased thickness and negative curvature in a bilayer consisting of lysophosphatidylcholines and free fatty acids. , 2010, Biochimica et biophysica acta.

[157]  E Jakobsson,et al.  Computer simulation studies of biological membranes: progress, promise and pitfalls. , 1997, Trends in biochemical sciences.

[158]  Herman J. C. Berendsen,et al.  MOLECULAR-DYNAMICS OF A BILAYER-MEMBRANE , 1983 .

[159]  I. Vattulainen,et al.  Calculation of the electrostatic potential of lipid bilayers from molecular dynamics simulations: methodological issues. , 2009, The Journal of chemical physics.

[160]  Marcus Mueller,et al.  Biological and synthetic membranes: What can be learned from a coarse-grained description? , 2006 .

[161]  H. Mcconnell,et al.  Condensed complexes of cholesterol and phospholipids. , 2003, Biophysical journal.

[162]  Ilpo Vattulainen,et al.  Mitochondrial membranes with mono- and divalent salt: changes induced by salt ions on structure and dynamics. , 2009, The journal of physical chemistry. B.

[163]  A. L. Rabinovich,et al.  Molecular dynamics simulations of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to self-consistent field modeling. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[164]  M. Berkowitz,et al.  Molecular dynamics simulations of bilayers containing mixtures of sphingomyelin with cholesterol and phosphatidylcholine with cholesterol. , 2007, The journal of physical chemistry. B.

[165]  P. Coppock,et al.  Atomistic simulations of mixed-lipid bilayers in gel and fluid phases. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[166]  T. Woolf,et al.  Changes in phosphatidylcholine headgroup tilt and water order induced by monovalent salts: molecular dynamics simulations. , 2004, Biophysical journal.

[167]  A. Maliniak,et al.  Molecular dynamics simulations of cardiolipin bilayers. , 2008, The journal of physical chemistry. B.

[168]  Durba Sengupta,et al.  Polarizable Water Model for the Coarse-Grained MARTINI Force Field , 2010, PLoS Comput. Biol..

[169]  Robert Vácha,et al.  Biomolecular simulations of membranes: physical properties from different force fields. , 2008, The Journal of chemical physics.

[170]  Stephen R. Wassall,et al.  Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. , 2009, Biochimica et biophysica acta.

[171]  D. Jump,et al.  Docosahexaenoic acid (DHA) and hepatic gene transcription. , 2008, Chemistry and physics of lipids.

[172]  M. Berkowitz,et al.  Detailed molecular dynamics simulations of model biological membranes containing cholesterol. , 2009, Biochimica et biophysica acta.

[173]  Solvent-free model for self-assembling fluid bilayer membranes: stabilization of the fluid phase based on broad attractive tail potentials. , 2005, The Journal of chemical physics.

[174]  K. Merz,et al.  Computer Simulation of Lipid Systems , 2007 .

[175]  M. Klein,et al.  Hydrogen Bonding Structure and Dynamics of Water at the Dimyristoylphosphatidylcholine Lipid Bilayer Surface from a Molecular Dynamics Simulation , 2004 .

[176]  D. Peter Tieleman,et al.  A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96 45A3 force field , 2003, European Biophysics Journal.

[177]  N. Gu,et al.  Nanoparticle's Size Effect on Its Translocation Across a Lipid Bilayer : A Molecular Dynamics Simulation , 2010 .

[178]  J. Essex,et al.  Behaviour of small solutes and large drugs in a lipid bilayer from computer simulations. , 2005, Biochimica et biophysica acta.

[179]  A. Sum,et al.  Molecular studies of the gel to liquid-crystalline phase transition for fully hydrated DPPC and DPPE bilayers. , 2007, Biochimica et biophysica acta.

[180]  Siewert J Marrink,et al.  Martini Coarse-Grained Force Field: Extension to Carbohydrates. , 2009, Journal of chemical theory and computation.

[181]  Klaus Schulten,et al.  Four-scale description of membrane sculpting by BAR domains. , 2008, Biophysical journal.

[182]  Ian R. Gould,et al.  Structure and dynamics of phospholipid bilayers using recently developed general all‐atom force fields , 2008, J. Comput. Chem..

[183]  M. Berkowitz,et al.  Orientational dynamics of water in phospholipid bilayers with different hydration levels. , 2009, The journal of physical chemistry. B.

[184]  Gregory A Voth,et al.  Solvent-free lipid bilayer model using multiscale coarse-graining. , 2009, The journal of physical chemistry. B.

[185]  K. Gawrisch,et al.  Insights from biophysical studies on the role of polyunsaturated fatty acids for function of G-protein coupled membrane receptors. , 2008, Prostaglandins, leukotrienes, and essential fatty acids.

[186]  M. Berkowitz,et al.  Molecular dynamics simulations of SOPS and sphingomyelin bilayers containing cholesterol. , 2007, Biophysical journal.

[187]  Herman J. C. Berendsen,et al.  Simulation of Water Transport through a Lipid Membrane , 1994 .

[188]  Jeffery B. Klauda,et al.  Dynamical motions of lipids and a finite size effect in simulations of bilayers. , 2006, The Journal of chemical physics.

[189]  Ryan W. Benz,et al.  Investigation of finite system-size effects in molecular dynamics simulations of lipid bilayers. , 2006, The journal of physical chemistry. B.

[190]  W. Shinoda,et al.  Molecular dynamics study of bipolar tetraether lipid membranes. , 2005, Biophysical journal.

[191]  Wilfred F. van Gunsteren,et al.  An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase , 2001, J. Comput. Chem..

[192]  Sagar A. Pandit,et al.  Aqueous solutions next to phospholipid membrane surfaces: insights from simulations. , 2006, Chemical reviews.

[193]  Bert L. de Groot,et al.  Acyl chain order parameter profiles in phospholipid bilayers: computation from molecular dynamics simulations and comparison with 2H NMR experiments , 2007, European Biophysics Journal.

[194]  S. Feller,et al.  Polyunsaturated docosahexaenoic vs docosapentaenoic acid-differences in lipid matrix properties from the loss of one double bond. , 2003, Journal of the American Chemical Society.

[195]  Jason D. Perlmutter,et al.  The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering. , 2008, Biophysical journal.

[196]  Olle Edholm,et al.  Dynamics in atomistic simulations of phospholipid membranes: Nuclear magnetic resonance relaxation rates and lateral diffusion. , 2006, The Journal of chemical physics.

[197]  Massimo G. Noro,et al.  Water permeation through stratum corneum lipid bilayers from atomistic simulations , 2009, 0907.1664.

[198]  Ronald N. McElhaney,et al.  Cholesterol–phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes , 2004 .

[199]  A. Lyubartsev,et al.  Calculation of effective interaction potentials from radial distribution functions: A reverse Monte Carlo approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[200]  Ilpo Vattulainen,et al.  Lipid Bilayers Driven to a Wrong Lane in Molecular Dynamics Simulations by Subtle Changes in Long-Range Electrostatic Interactions , 2004 .

[201]  C. McCabe,et al.  A coarse-grained model for amorphous and crystalline fatty acids. , 2010, The Journal of chemical physics.

[202]  P. Jedlovszky,et al.  Pressure reversal of general anaesthetics: A possible mechanism from molecular dynamics simulations , 2009 .

[203]  Wataru Shinoda,et al.  Large-Scale Molecular Dynamics Simulations of Self-Assembling Systems , 2008, Science.

[204]  Eric Jakobsson,et al.  Structure of sphingomyelin bilayers: a simulation study. , 2003, Biophysical journal.

[205]  Julien Michel,et al.  Coarse-grain modelling of DMPC and DOPC lipid bilayers , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[206]  Sergei Izvekov,et al.  Multiscale Coarse-Graining of Mixed Phospholipid/Cholesterol Bilayers. , 2006, Journal of chemical theory and computation.

[207]  F. W. Wiegel,et al.  Simulation of a lipid monolayer using molecular dynamics , 1980, Nature.

[208]  O. Berger,et al.  Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. , 1997, Biophysical journal.

[209]  Ilpo Vattulainen,et al.  Influence of ethanol on lipid membranes: from lateral pressure profiles to dynamics and partitioning. , 2008, The journal of physical chemistry. B.

[210]  Alexander D. MacKerell,et al.  An Improved Empirical Potential Energy Function for Molecular Simulations of Phospholipids , 2000 .

[211]  D. Tieleman,et al.  Thermodynamic analysis of the effect of cholesterol on dipalmitoylphosphatidylcholine lipid membranes. , 2009, Journal of the American Chemical Society.

[212]  U. Essmann,et al.  The origin of the hydration interaction of lipid bilayers from MD simulation of dipalmitoylphosphatidylcholine membranes in gel and liquid crystalline phases , 1995 .

[213]  G. Voth,et al.  Hybrid coarse-graining approach for lipid bilayers at large length and time scales. , 2009, The journal of physical chemistry. B.

[214]  Erik Lindahl,et al.  Conformational Changes and Slow Dynamics through Microsecond Polarized Atomistic Molecular Simulation of an Integral Kv1.2 Ion Channel , 2009, PLoS Comput. Biol..

[215]  Alexander D. MacKerell,et al.  An all-atom empirical energy function for the simulation of nucleic acids , 1995 .

[216]  S. Takagi,et al.  A molecular-dynamics study of lipid bilayers: effects of the hydrocarbon chain length on permeability. , 2005, The Journal of chemical physics.

[217]  S. Marrink,et al.  The freezing process of small lipid vesicles at molecular resolution , 2009 .

[218]  J. Risbo,et al.  Computational Approach to Lipid-Protein Interactions in Membranes , 1996 .

[219]  A. Lyubartsev,et al.  NMR investigations of interactions between anesthetics and lipid bilayers. , 2008, Biochimica et biophysica acta.

[220]  A. L. Rabinovich,et al.  Properties of unsaturated phospholipid bilayers: Effect of cholesterol , 2007, Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology.

[221]  E. Lindahl,et al.  Molecular dynamics simulations of phospholipid bilayers with cholesterol. , 2003, Biophysical journal.

[222]  M. Berkowitz,et al.  Effects of alkali cations and halide anions on the DOPC lipid membrane. , 2009, The journal of physical chemistry. A.

[223]  Siewert J Marrink,et al.  Cholesterol shows preference for the interior of polyunsaturated lipid membranes. , 2008, Journal of the American Chemical Society.

[224]  S. Feller,et al.  Computational modeling of membrane bilayers , 2008 .

[225]  Klaus Schulten,et al.  Coarse grained protein-lipid model with application to lipoprotein particles. , 2006, The journal of physical chemistry. B.

[226]  Michael L. Klein,et al.  Simulations of Phospholipids Using a Coarse Grain Model , 2001 .

[227]  Klaus Schulten,et al.  Lipid bilayer pressure profiles and mechanosensitive channel gating. , 2004, Biophysical journal.

[228]  J. Lupton,et al.  Mechanisms by which docosahexaenoic acid and related fatty acids reduce colon cancer risk and inflammatory disorders of the intestine. , 2008, Chemistry and physics of lipids.

[229]  Bernard R Brooks,et al.  Isotropic periodic sum: a method for the calculation of long-range interactions. , 2005, The Journal of chemical physics.

[230]  S. Wassall,et al.  Docosahexaenoic acid domains: the ultimate non-raft membrane domain. , 2008, Chemistry and physics of lipids.

[231]  Leonor Saiz,et al.  Towards an Understanding of Complex Biological Membranes from Atomistic Molecular Dynamics Simulations , 2002, Bioscience reports.

[232]  Jhuma Das,et al.  Subdiffusion and lateral diffusion coefficient of lipid atoms and molecules in phospholipid bilayers. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[233]  Masuhiro Mikami,et al.  Comparative molecular dynamics study of ether- and ester-linked phospholipid bilayers. , 2004, The Journal of chemical physics.

[234]  Gregory A. Voth,et al.  The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models. , 2008, The Journal of chemical physics.

[235]  K. Ayappa,et al.  The influence of bilayer composition on the gel to liquid crystalline transition. , 2009, The journal of physical chemistry. B.

[236]  G. Voth,et al.  Hierarchical coarse-graining strategy for protein-membrane systems to access mesoscopic scales. , 2010, Faraday discussions.

[237]  Ilpo Vattulainen,et al.  Lessons of slicing membranes: interplay of packing, free area, and lateral diffusion in phospholipid/cholesterol bilayers. , 2004, Biophysical journal.

[238]  H L Scott,et al.  Combined Monte Carlo and molecular dynamics simulation of hydrated 18:0 sphingomyelin-cholesterol lipid bilayers. , 2004, The Journal of chemical physics.

[239]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[240]  Alexander P. Lyubartsev,et al.  Hierarchical multiscale modelling scheme from first principles to mesoscale , 2009 .

[241]  Gregory A Voth,et al.  Systematic multiscale simulation of membrane protein systems. , 2009, Current opinion in structural biology.

[242]  M. Mezei,et al.  Effect of Cholesterol on the Properties of Phospholipid Membranes. 1. Structural Features , 2003 .

[243]  Nava Whiteford,et al.  Validation of all-atom phosphatidylcholine lipid force fields in the tensionless NPT ensemble. , 2009, Biochimica et biophysica acta.

[244]  M. Berkowitz,et al.  Structure and dynamics of water at the interface with phospholipid bilayers. , 2005, The Journal of chemical physics.

[245]  I. Vattulainen,et al.  Pore formation coupled to ion transport through lipid membranes as induced by transmembrane ionic charge imbalance: atomistic molecular dynamics study. , 2005, Journal of the American Chemical Society.

[246]  W. D. Otter Free energies of stable and metastable pores in lipid membranes under tension. , 2009 .

[247]  S. Boxer,et al.  Model membrane systems and their applications. , 2007, Current opinion in chemical biology.

[248]  T. Xiang,et al.  A computer simulation of free-volume distributions and related structural properties in a model lipid bilayer. , 1993, Biophysical journal.

[249]  S. Feller,et al.  Molecular dynamics simulation study of correlated motions in phospholipid bilayer membranes. , 2009, The journal of physical chemistry. B.

[250]  Dusanka Janezic,et al.  Liquid-ordered phase formation in cholesterol/sphingomyelin bilayers: all-atom molecular dynamics simulations. , 2009, The journal of physical chemistry. B.

[251]  Jeffery B. Klauda,et al.  Simulation-based methods for interpreting x-ray data from lipid bilayers. , 2006, Biophysical journal.

[252]  Wilfred F. van Gunsteren,et al.  A new force field for simulating phosphatidylcholine bilayers , 2010, J. Comput. Chem..

[253]  Martin Karplus,et al.  A simulation based model of NMR T1 relaxation in lipid bilayer vesicles , 1988 .

[254]  W. Shinoda,et al.  Molecular Dynamics Study on the Effect of Chain Branching on the Physical Properties of Lipid Bilayers: Structural Stability , 2003 .

[255]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[256]  Martin A Gundersen,et al.  Nanopore formation and phosphatidylserine externalization in a phospholipid bilayer at high transmembrane potential. , 2006, Journal of the American Chemical Society.

[257]  W. Shinoda,et al.  Molecular Dynamics Study on the Effects of Chain Branching on the Physical Properties of Lipid Bilayers: 2. Permeability , 2004 .

[258]  Ulf R. Pedersen,et al.  Molecular packing in 1-hexanol-DMPC bilayers studied by molecular dynamics simulation. , 2007, Biophysical chemistry.

[259]  Helmut Grubmüller,et al.  Kinetics, statistics, and energetics of lipid membrane electroporation studied by molecular dynamics simulations. , 2008, Biophysical journal.

[260]  Alexander D. MacKerell,et al.  Molecular dynamics simulation of unsaturated lipid bilayers at low hydration: parameterization and comparison with diffraction studies. , 1997, Biophysical journal.

[261]  I. Vattulainen,et al.  Ion leakage through transient water pores in protein-free lipid membranes driven by transmembrane ionic charge imbalance. , 2007, Biophysical journal.

[262]  Douglas J. Tobias,et al.  Atomic-scale molecular dynamics simulations of lipid membranes , 1997 .

[263]  Hee-Yong Kim Biochemical and biological functions of docosahexaenoic acid in the nervous system: modulation by ethanol. , 2008, Chemistry and physics of lipids.

[264]  I. Vattulainen,et al.  Polyunsaturation in lipid membranes: dynamic properties and lateral pressure profiles. , 2007, The journal of physical chemistry. B.

[265]  David Gavaghan,et al.  Multi-scale computational modelling in biology and physiology , 2007, Progress in Biophysics and Molecular Biology.