A simple analytic proof of an inequality by P. Buser
暂无分享,去创建一个
[1] I. Holopainen. Riemannian Geometry , 1927, Nature.
[2] H. Fédérer. Geometric Measure Theory , 1969 .
[3] J. Cheeger. A lower bound for the smallest eigenvalue of the Laplacian , 1969 .
[4] M. Berger,et al. Le Spectre d'une Variete Riemannienne , 1971 .
[5] L. Gross. LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .
[6] Shing-Tung Yau,et al. Isoperimetric constants and the first eigenvalue of a compact riemannian manifold , 1975 .
[7] M. Gromov. Paul Levy's isoperimetric inequality , 1980 .
[8] O. Rothaus. Diffusion on compact Riemannian manifolds and logarithmic Sobolev inequalities , 1981 .
[9] P. Buser. A note on the isoperimetric constant , 1982 .
[10] N. Varopoulos,et al. Hardy-Littlewood theory for semigroups , 1985 .
[11] P. Bérard,et al. Sur une inégalité isopérimétrique qui généralise celle de Paul Lévy-Gromov , 1985 .
[12] O. Rothaus. Analytic inequalities, isoperimetric inequalities and logarithmic Sobolev inequalities , 1985 .
[13] S. Yau,et al. On the parabolic kernel of the Schrödinger operator , 1986 .
[14] E. Davies,et al. Heat kernels and spectral theory , 1989 .
[15] N. Varopoulos. Small time gaussian estimates of heat diffusion kernels. I: the semigroup technique , 1989 .
[16] Sobolev Inequalities on Graphs and on Manifolds , 1992 .
[17] M. Ledoux. Semigroup proofs of the isoperimetric inequality in Euclidean and Gauss space , 1994 .