Overcoming the speckle correlation limit to achieve a fiber wavemeter with attometer resolution.

The measurement of the wavelength of light using speckle is a promising tool for the realization of compact and precise wavemeters and spectrometers. However, the resolution of these devices is limited by strong correlations between the speckle patterns produced by closely spaced wavelengths. Here, we show how principal component analysis of speckle images provides a route to overcome this limit. Using this, we demonstrate a compact wavemeter that measures attometer-scale wavelength changes of a stabilized diode laser, eight orders of magnitude below the speckle correlation limit.

[1]  Kishan Dholakia,et al.  Harnessing speckle for a sub-femtometre resolved broadband wavemeter and laser stabilization , 2017, Nature Communications.

[2]  Hui Cao,et al.  Perspective on speckle spectrometers , 2017 .

[3]  Hemant D. Tagare,et al.  Broadband multimode fiber spectrometer , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[4]  Noel H. Wan,et al.  High-resolution optical spectroscopy using multimode interference in a compact tapered fibre , 2015, Nature Communications.

[5]  Michael Linde Jakobsen,et al.  Speckle-based spectrometer. , 2015, Optics letters.

[6]  Frédo Durand,et al.  The visual microphone , 2014, ACM Trans. Graph..

[7]  H. Cao,et al.  High-resolution and broadband all-fiber spectrometers , 2014, 1406.2904.

[8]  Brandon Redding,et al.  Noise analysis of spectrometers based on speckle pattern reconstruction. , 2014, Applied optics.

[9]  H. Cao,et al.  Compact spectrometer based on a disordered photonic chip , 2013, Nature Photonics.

[10]  Wiendelt Steenbergen,et al.  Laser speckle contrast imaging: theoretical and practical limitations , 2013, Journal of biomedical optics.

[11]  K. Dholakia,et al.  Modal Characterization using Principal Component Analysis: application to Bessel, higher-order Gaussian beams and their superposition , 2013, Scientific Reports.

[12]  Brandon Redding,et al.  All-fiber spectrometer based on speckle pattern reconstruction. , 2013, Optics express.

[13]  S. Popoff,et al.  Using a multimode fiber as a high resolution, low loss spectrometer , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[14]  Kishan Dholakia,et al.  Simultaneous determination of the constituent azimuthal and radial mode indices for light fields possessing orbital angular momentum , 2012 .

[15]  Aristide Dogariu,et al.  Transmission matrices of random media: means for spectral polarimetric measurements. , 2010, Optics letters.

[16]  K. Dholakia,et al.  In situ wavefront correction and its application to micromanipulation , 2010 .

[17]  A. Mosk,et al.  Exploiting disorder for perfect focusing , 2009, 0910.0873.

[18]  A. Mosk,et al.  Focusing coherent light through opaque strongly scattering media. , 2007, Optics letters.

[19]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[20]  Jeff Hecht,et al.  Understanding fiber optics (3rd ed.) , 1998 .

[21]  W. Demtröder Laser Spectroscopy: Basic Concepts and Instrumentation , 1996 .

[22]  Petr Hlubina,et al.  Spectral and Dispersion Analysis of Laser Sources and Multimode Fibres Via the Statistics of the Intensity Pattern , 1994 .

[23]  W. Freude,et al.  Erratum: "Speckle interferometry for spectral analysis of laser sources and multimode optical waveguides" , 1986 .

[24]  I. Yamaguchi,et al.  A laser-speckle strain gauge , 1981 .

[25]  Joseph W. Goodman,et al.  Frequency dependence of modal noise in multimode optical fibers , 1980 .

[26]  Torsten Werner,et al.  Laser Spectroscopy Basic Concepts And Instrumentation , 2016 .

[27]  Kishan Dholakia,et al.  Random super-prism wavelength meter. , 2014, Optics letters.

[28]  D. Boas,et al.  Laser speckle contrast imaging in biomedical optics. , 2010, Journal of biomedical optics.

[29]  Jeff Hecht,et al.  Understanding Fiber Optics , 1987 .

[30]  Journal of the Optical Society of America , 1950, Nature.