Scalability in Perception for Autonomous Driving: Waymo Open Dataset

The research community has increasing interest in autonomous driving research, despite the resource intensity of obtaining representative real world data. Existing self-driving datasets are limited in the scale and variation of the environments they capture, even though generalization within and between operating regions is crucial to the over-all viability of the technology. In an effort to help align the research community’s contributions with real-world self-driving problems, we introduce a new large scale, high quality, diverse dataset. Our new dataset consists of 1150 scenes that each span 20 seconds, consisting of well synchronized and calibrated high quality LiDAR and camera data captured across a range of urban and suburban geographies. It is 15x more diverse than the largest camera+LiDAR dataset available based on our proposed diversity metric. We exhaustively annotated this data with 2D (camera image) and 3D (LiDAR) bounding boxes, with consistent identifiers across frames. Finally, we provide strong baselines for 2D as well as 3D detection and tracking tasks. We further study the effects of dataset size and generalization across geographies on 3D detection methods. Find data, code and more up-to-date information at http://www.waymo.com/open.

[1]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[2]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[3]  Rainer Stiefelhagen,et al.  Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..

[4]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[5]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[6]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[8]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[9]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Bolei Zhou,et al.  Scene Parsing through ADE20K Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  James M. Rehg,et al.  Multi-object Tracking with Neural Gating Using Bilinear LSTM , 2018, ECCV.

[14]  In So Kweon,et al.  KAIST Multi-Spectral Day/Night Data Set for Autonomous and Assisted Driving , 2018, IEEE Transactions on Intelligent Transportation Systems.

[15]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[16]  Ruigang Yang,et al.  The ApolloScape Dataset for Autonomous Driving , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[17]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Yi-Ting Chen,et al.  The H3D Dataset for Full-Surround 3D Multi-Object Detection and Tracking in Crowded Urban Scenes , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[19]  Simon Lucey,et al.  Argoverse: 3D Tracking and Forecasting With Rich Maps , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[20]  Kris Kitani,et al.  A Baseline for 3D Multi-Object Tracking , 2019, ArXiv.

[21]  Cyrill Stachniss,et al.  SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[22]  Yin Zhou,et al.  End-to-End Multi-View Fusion for 3D Object Detection in LiDAR Point Clouds , 2019, CoRL.

[23]  Carlos Vallespi-Gonzalez,et al.  LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Ross B. Girshick,et al.  LVIS: A Dataset for Large Vocabulary Instance Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Qiang Xu,et al.  nuScenes: A Multimodal Dataset for Autonomous Driving , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).