Still more spawner-recruitment curves: the hockey stick and its generalizations

Estimation of maximum reproductive rate using spawner-recruitment models involves extrapolating survival for very low spawner abundance. Existing spawner-recruitment curves often lead to biologically unreasonable extrapo- lations or are unable to model nondecreasing spawner-recruitment data adequately. One alternative is a piecewise linear spawner-recruitment model known as the hockey stick. We compare the fit of the Beverton-Holt with the hockey stick for 246 spawner-recruitment data sets. We show that the Beverton-Holt usually estimates a larger carrying capacity of recruits and a larger maximum reproductive rate than the hockey stick. We propose two families of generalizations of the hockey stick, one with a simple interpretation and one that is more complex but smoother. These generalized hockey sticks are more biologically plausible, less subject to numerical difficulties, and of greater utility in metaanalytic models than the hockey stick. Resume : Pour estimer le taux maximum de reproduction au moyen de modeles geniteurs-recrutement, on doit extra- poler le taux de survie avec une tres faible abondance de geniteurs. Les courbes existantes reliant le nombre de geni - teurs et le recrutement donnent souvent lieu a des extrapolations biologiquement incorrectes ou ne permettent pas de modeliser adequatement les donnees geniteurs-recrutement non decroissantes. Face a ces difficultes, on peut avoir re - cours a un modele geniteurs-recrutement lineaire par morceaux appele modele en bâton de hockey. Nous comparons l'ajustement du modele de Beverton-Holt a celui de ce nouveau modele pour 246 ensembles de donnees geniteurs- recrutement. Nous montrons que le modele de Beverton-Holt donne habituellement une plus grande capacite de charge de recrues et un taux maximum de reproduction plus eleve que le modele en bâton de hockey. Nous proposons deux familles de generalisations du modele en bâton de hockey, l'une avec une interpretation simple et l'autre avec une in- terpretation plus complexe mais plus lisse. Ces modeles en bâton de hockey generalises sont biologiquement plus plau- sibles, moins sensibles aux difficultes numeriques, et plus utiles dans les modeles meta-analytiques que le modele en bâton de hockey. (Traduit par la Redaction) Barrowman and Myers 676

[1]  Ransom A. Myers,et al.  What is the carrying capacity for fish in the ocean? A meta-analysis of population dynamics of North Atlantic cod , 2001 .

[2]  M. Bradford,et al.  Reference points for coho salmon (Oncorhynchus kisutch) harvest rates and escapement goals based on freshwater production , 2000 .

[3]  Ransom A. Myers,et al.  Maximum reproductive rate of fish at low population sizes , 1999 .

[4]  L. Ginzburg,et al.  Applied Population Ecology: Principles and Computer Exercises Using Ramas® EcoLab 2.0. , 1999 .

[5]  T. Quinn,et al.  Is the distribution, growth and survival of juvenile salmonids sex biased? Negative results for coho salmon in an experimental stream channel , 1998 .

[6]  C. Walters,et al.  Is solar radiation responsible for declines in marine survival rates of anadromous salmonids that rear in small streams , 1998 .

[7]  T. Nickelson,et al.  Population viability of coho salmon, Oncorhynchus kisutch, in Oregon coastal basins: application of a habitat-based life cycle model , 1998 .

[8]  G. Mertz,et al.  THE LIMITS OF EXPLOITATION: A PRECAUTIONARY APPROACH , 1998 .

[9]  Ray Hilborn,et al.  Depensation in fish stocks : a hierarchic Bayesian meta-analysis , 1997 .

[10]  M. Bradford,et al.  Empirical Review of Coho Salmon Smolt Abundance and the Prediction of Smolt Production at the Regional Level , 1997 .

[11]  Wayne M. Getz,et al.  A Hypothesis Regarding the Abruptness of Density Dependence and the Growth Rate of Populations , 1996 .

[12]  A. Rosenberg,et al.  Population Dynamics of Exploited Fish Stocks at Low Population Levels , 1995, Science.

[13]  R. Lande,et al.  Optimal harvesting, economic discounting and extinction risk in fluctuating populations , 1994, Nature.

[14]  A. Rosenberg,et al.  In search of thresholds for recruitment overfishing , 1994 .

[15]  P. Mace,et al.  Relationships between Common Biological Reference Points Used as Thresholds and Targets of Fisheries Management Strategies , 1994 .

[16]  Francis Juanes,et al.  Recruitment Limitation as a Consequence of Natural Selection for Use of Restricted Feeding Habitats and Predation Risk Taking by Juvenile Fishes , 1993 .

[17]  L. Margolis,et al.  Pacific Salmon Life Histories , 1992 .

[18]  A. Łomnicki Population ecology of individuals. , 1988, Monographs in population biology.

[19]  J. Schnute A General Theory for Analysis of Catch and Effort Data , 1985 .

[20]  C. Walters Bias in the Estimation of Functional Relationships from Time Series Data , 1985 .

[21]  J. Schnute,et al.  A Biologically Meaningful Approach to Response Surface Analysis , 1984 .

[22]  M. Stocker,et al.  An Evaluation of Morphometrics and Meristics for Stock Separation of Pacific Herring (Clupea harengus pallasi) , 1984 .

[23]  John Shepherd,et al.  A versatile new stock-recruitment relationship for fisheries, and the construction of sustainable yield curves , 1982 .

[24]  A. Tishler,et al.  A New Maximum Likelihood Algorithm for Piecewise Regression , 1981 .

[25]  T. Bellows The Descriptive Properties of Some Models for Density Dependence , 1981 .

[26]  P. Lerman Fitting Segmented Regression Models by Grid Search , 1980 .

[27]  R. Deriso Harvesting Strategies and Parameter Estimation for an Age-Structured Model , 1980 .

[28]  Ned J. Knight Factors affecting the smolt yield of Coho salmon (Oncorhynchus kisutch) in three Oregon streams , 1979 .

[29]  J. Maynard Smith,et al.  The Stability of Predator‐Prey Systems , 1973 .

[30]  J. G. Hunter Survival and Production of Pink and Chum Salmon in a Coastal Stream , 1959 .