Derivation of the discrete conservation laws for a family of finite difference schemes
暂无分享,去创建一个
[1] L. Vázquez,et al. Motion of a charge in a magnetic dipole field. I. Painlevé analysis and a conservative numerical scheme , 1988 .
[2] Comportamiento de ciertas cadenas de osciladores no lineales , 1988 .
[3] W. Strauss,et al. Numerical solution of a nonlinear Klein-Gordon equation , 1978 .
[4] A. Galindo. A remarkable invariance of classical Dirac Lagrangians , 1977 .
[5] J. M. Sanz-Serna,et al. Methods for the numerical solution of the nonlinear Schroedinger equation , 1984 .
[6] Luis Vázquez,et al. Numerical solution of a nonlinear wave equation in polar coordinates , 1984 .
[7] J. Cuesta,et al. Absence of dissipative solutions of the schrodinger and klein-gordon equations with logarithmic , 1988 .
[8] L. Vázquez,et al. Analysis of Four Numerical Schemes for a Nonlinear Klein-Gordon Equation , 1990 .
[9] L. Vázquez,et al. A numerical scheme for one-dimensional mechanical problems. , 1987 .
[10] T. Cazenave,et al. Existence of localized solutions for a classical nonlinear Dirac field , 1986 .
[11] Michel C. Delfour,et al. Finite-difference solutions of a non-linear Schrödinger equation , 1981 .
[12] Kuo Pen-Yu,et al. The numerical study of a nonlinear one-dimensional Dirac equation , 1983 .