Computational models of the morphology of the developing neonatal human brain

Automated medical image analysis has made significant progress over the past decades. With recent advances in acquiring high quality in vivo images of the developing human brain, analysing this data for the purpose of understanding brain development is rapidly becoming feasible. Premature birth increases the risk of developing neurocognitive and neurobehavioural disorders. Studying the morphology and function of the brain during maturation, provides us not only with a better understanding of normal development, but may help identify causes for these. A difficulty is to differentiate between neurodevelopmental consequences and normal variation. Reference models are therefore needed. This thesis presents computational methods used to obtain such models. As a prerequisite, an efficient topology-preserving registration is required. Existing methods have been evaluated mostly on adult brain images, with considerably different shape and appearance. We evaluate approaches for the fast diffeomorphic registration on a publicly available neonatal brain image dataset, and present an improved inverse consistent variant of the stationary velocity free-form deformation algorithm. We employ this algorithm for the construction of a spatio-temporal atlas of the neonatal brain, and compare two different approaches. The first approach is based on the registration of all pairs of images. Residual misalignment thereby still impacts the sharpness of the atlas. More detail is preserved with an iterative refinement of the transformations relating each image to the atlas space. We developed a second approach, which jointly estimates mean shape and longitudinal change iteratively. The final atlas demonstrates increased sharpness and temporal consistency. Finally, we present deformable models for the reconstruction of the neonatal cortex, which correct for common errors observed in state-of-the-art neonatal brain segmentations. Our models were found by experts to be superior to the original segmentation in terms of accurately delineating the cortical anatomy, and form a vital component of image processing pipelines of the Developing Human Connectome Project.

[1]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[2]  Nicholas Ayache,et al.  Non-parametric Diffeomorphic Image Registration with the Demons Algorithm , 2007, MICCAI.

[3]  Robert T. Schultz,et al.  Segmentation and Measurement of the Cortex from 3D MR Images , 1998, MICCAI.

[4]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[5]  Tom Vercauteren,et al.  Diffeomorphic demons: Efficient non-parametric image registration , 2009, NeuroImage.

[6]  Alan C. Evans,et al.  Enhancement of MR Images Using Registration for Signal Averaging , 1998, Journal of Computer Assisted Tomography.

[7]  Paul Suetens,et al.  Nonrigid Image Registration Using Free-Form Deformations with a Local Rigidity Constraint , 2004, MICCAI.

[8]  Marc Modat,et al.  Adaptive Neonate Brain Segmentation , 2011, MICCAI.

[9]  Olivier D. Faugeras,et al.  Dense image matching with global and local statistical criteria: a variational approach , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[10]  Simon K Warfield,et al.  Early Alteration of Structural and Functional Brain Development in Premature Infants Born with Intrauterine Growth Restriction , 2004, Pediatric Research.

[11]  Nikos Paragios,et al.  DRAMMS: Deformable Registration via Attribute Matching and Mutual-Saliency Weighting , 2009, IPMI.

[12]  Nicholas Ayache,et al.  Symmetric Log-Domain Diffeomorphic Registration: A Demons-Based Approach , 2008, MICCAI.

[13]  Zhuowen Tu,et al.  Auto-Context and Its Application to High-Level Vision Tasks and 3D Brain Image Segmentation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Georg Langs,et al.  A spatio-temporal latent atlas for semi-supervised learning of fetal brain segmentations and morphological age estimation , 2014, Medical Image Anal..

[15]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[16]  Sébastien Ourselin,et al.  Parametric non-rigid registration using a stationary velocity field , 2012, 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis.

[17]  Daniel Rueckert,et al.  Automatic quantification of normal cortical folding patterns from fetal brain MRI , 2014, NeuroImage.

[18]  Daniel Rueckert,et al.  A dynamic 4D probabilistic atlas of the developing brain , 2011, NeuroImage.

[19]  Paul Suetens,et al.  Comparison Between Parzen Window Interpolation and Generalised Partial Volume Estimation for Nonrigid Image Registration Using Mutual Information , 2006, WBIR.

[20]  Tianzi Jiang,et al.  Diffeomorphic Metric Landmark Mapping Using Stationary Velocity Field Parameterization , 2015, International Journal of Computer Vision.

[21]  David Rey,et al.  Symmetrization of the Non-rigid Registration Problem Using Inversion-Invariant Energies: Application to Multiple Sclerosis , 2000, MICCAI.

[22]  Benny Lautrup,et al.  Brownian Warps: A Least Committed Prior for Non-rigid Registration , 2002, MICCAI.

[23]  D. Louis Collins,et al.  Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation , 2011, NeuroImage.

[24]  Mary A. Rutherford,et al.  Reconstruction of fetal brain MRI with intensity matching and complete outlier removal , 2012, Medical Image Anal..

[25]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[26]  C. Boesch,et al.  Structural and Neurobehavioral Delay in Postnatal Brain Development of Preterm Infants1 , 1996, Pediatric Research.

[27]  Nicholas Ayache,et al.  LCC-Demons: A robust and accurate symmetric diffeomorphic registration algorithm , 2013, NeuroImage.

[28]  John G. Sled,et al.  Quantitative MRI for studying neonatal brain development , 2013, Neuroradiology.

[29]  Colin Studholme,et al.  Patch-based augmentation of Expectation–Maximization for brain MRI tissue segmentation at arbitrary age after premature birth , 2016, NeuroImage.

[30]  Paul Aljabar,et al.  Neonatal brain segmentation using second order neighborhood information , 2012 .

[31]  Yaozong Gao,et al.  Segmentation of neonatal brain MR images using patch-driven level sets , 2014, NeuroImage.

[32]  Daniel Rueckert,et al.  Volume and Shape Preservation of Enhancing Lesions when Applying Non-rigid Registration to a Time Series of Contrast Enhancing MR Breast Images , 2000, MICCAI.

[33]  Nicholas Ayache,et al.  Iconic feature based nonrigid registration: the PASHA algorithm , 2003, Comput. Vis. Image Underst..

[34]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[35]  Dinggang Shen,et al.  Feature‐based groupwise registration by hierarchical anatomical correspondence detection , 2012, Human brain mapping.

[36]  Colin Studholme,et al.  Atlas‐based segmentation of developing tissues in the human brain with quantitative validation in young fetuses , 2010, Human brain mapping.

[37]  Daniel Rueckert,et al.  A Multi-channel 4D Probabilistic Atlas of the Developing Brain: Application to Fetuses and Neonates , 2012 .

[38]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[39]  Oscar Camara,et al.  Toward the automatic quantification of in utero brain development in 3D structural MRI: A review , 2017, Human brain mapping.

[40]  Yaozong Gao,et al.  Integration of sparse multi-modality representation and anatomical constraint for isointense infant brain MR image segmentation , 2014, NeuroImage.

[41]  Max A. Viergever,et al.  Assessment of quantitative cortical biomarkers in the developing brain of preterm infants , 2013, Medical Imaging.

[42]  C. Broit Optimal registration of deformed images , 1981 .

[43]  V. Borrell,et al.  Cerebral cortex expansion and folding: what have we learned? , 2016, The EMBO journal.

[44]  Daniel Rueckert,et al.  Diffeomorphic Registration Using B-Splines , 2006, MICCAI.

[45]  Daniel Rueckert,et al.  Construction of a consistent high-definition spatio-temporal atlas of the developing brain using adaptive kernel regression , 2012, NeuroImage.

[46]  Max A. Viergever,et al.  Automatic neonatal brain tissue segmentation with MRI , 2013, Medical Imaging.

[47]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[48]  Stefan Henn,et al.  A Full Curvature Based Algorithm for Image Registration , 2006, Journal of Mathematical Imaging and Vision.

[49]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[50]  Haiying Liu,et al.  A Generic Framework for Non-rigid Registration Based on Non-uniform Multi-level Free-Form Deformations , 2001, MICCAI.

[51]  Alan C. Evans,et al.  Automated 3-D extraction and evaluation of the inner and outer cortical surfaces using a Laplacian map and partial volume effect classification , 2005, NeuroImage.

[52]  Lawrence H. Staib,et al.  Fast nonrigid image registration using statistical deformation models learned from richly-annotated data , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[53]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[54]  Alan C. Evans,et al.  Multiple surface identification and matching in magnetic resonance images , 1994, Other Conferences.

[55]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[56]  G. Bydder,et al.  MR imaging assessment of myelination in the very preterm brain. , 2002, AJNR. American journal of neuroradiology.

[57]  Polina Golland,et al.  Automated segmentation of hippocampal subfields from ultra‐high resolution in vivo MRI , 2009, Hippocampus.

[58]  Max A. Viergever,et al.  Adaptive Stochastic Gradient Descent Optimisation for Image Registration , 2009, International Journal of Computer Vision.

[59]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[60]  Nathan D. Cahill,et al.  Demons algorithms for fluid and curvature registration , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[61]  Lilla Zöllei,et al.  A unified information theoretic framework for pair- and group-wise registration of medical images , 2006 .

[62]  Jerry L. Prince,et al.  Topology correction in brain cortex segmentation using a multiscale, graph-based algorithm , 2002, IEEE Transactions on Medical Imaging.

[63]  Jean-Louis Coatrieux,et al.  Quaternion based registration method in medical imaging , 1992, Proceedings of the 1992 International Biomedical Engineering Days.

[64]  Lars Ruthotto,et al.  A Lagrangian Gauss-Newton-Krylov Solver for Mass- and Intensity-Preserving Diffeomorphic Image Registration , 2017, SIAM J. Sci. Comput..

[65]  N. Ayache,et al.  Fast Non Rigid Matching by Gradient Descent: Study and Improvements of the "Demons" Algorithm , 1999 .

[66]  J. Gilmore,et al.  Infant Brain Atlases from Neonates to 1- and 2-Year-Olds , 2011, PloS one.

[67]  Jacques-Olivier Lachaud,et al.  Deformable meshes with automated topology changes for coarse-to-fine three-dimensional surface extraction , 1999, Medical Image Anal..

[68]  Nikos Paragios,et al.  Deformable Medical Image Registration: A Survey , 2013, IEEE Transactions on Medical Imaging.

[69]  L. Younes,et al.  On the metrics and euler-lagrange equations of computational anatomy. , 2002, Annual review of biomedical engineering.

[70]  Xiao Han,et al.  CRUISE: Cortical reconstruction using implicit surface evolution , 2004, NeuroImage.

[71]  Daniel Rueckert,et al.  Automatic tissue and structural segmentation of neonatal brain MRI using Expectation-Maximization , 2012 .

[72]  Jerry L Prince,et al.  Image Segmentation Using Deformable Models , 2000 .

[73]  Thomas S. Denney,et al.  A new consistent image registration formulation with a B-spline deformation model , 2009, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[74]  Ron Kikinis,et al.  Adaptive Template Moderated Spatially Varying Statistical Classification , 1998, MICCAI.

[75]  Alan C. Evans,et al.  Automatic Quantification of Multiple Sclerosis Lesion Volume Using Stereotaxic Space , 1996, VBC.

[76]  Janet Elizabeth Hope Open Source , 2017, Encyclopedia of GIS.

[77]  Gary E. Christensen,et al.  Deformable Shape Models for Anatomy , 1994 .

[78]  Jens H. Krüger,et al.  Fast Parallel Unbiased Diffeomorphic Atlas Construction on Multi-Graphics Processing Units , 2009, EGPGV@Eurographics.

[79]  Jian Chen,et al.  Neonatal Brain Tissue Classification with Morphological Adaptation and Unified Segmentation , 2016, Front. Neuroinform..

[80]  Laura Gui,et al.  Automatic segmentation of newborn brain MRI using mathematical morphology , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[81]  Alan C. Evans,et al.  Automatic Quantification of MS Lesions in 3D MRI Brain Data Sets: Validation of INSECT , 1998, MICCAI.

[82]  Calvin R. Maurer,et al.  A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[83]  Guy Marchal,et al.  3D Multi-Modality Medical Image Registration Using Feature Space Clustering , 1995, CVRMed.

[84]  M. Jenkinson Non-linear registration aka Spatial normalisation , 2007 .

[85]  R. Leahy,et al.  Magnetic Resonance Image Tissue Classification Using a Partial Volume Model , 2001, NeuroImage.

[86]  Daniel Rueckert,et al.  Automatic Whole Brain MRI Segmentation of the Developing Neonatal Brain , 2014, IEEE Transactions on Medical Imaging.

[87]  Daniel Rueckert,et al.  MRI of Moving Subjects Using Multislice Snapshot Images With Volume Reconstruction (SVR): Application to Fetal, Neonatal, and Adult Brain Studies , 2007, IEEE Transactions on Medical Imaging.

[88]  Colin Studholme,et al.  Simultaneous Population Based Image Alignment for Template Free Spatial Normalisation of Brain Anatomy , 2003, WBIR.

[89]  Robert M. O'Bara,et al.  Geometrically deformed models: a method for extracting closed geometric models form volume data , 1991, SIGGRAPH.

[90]  Mads Nielsen,et al.  A Statistical Model for Simultaneous Template Estimation, Bias Correction, and Registration of 3D Brain Images , 2016, MCV/BAMBI@MICCAI.

[91]  Myoung-Hee Kim,et al.  A non-self-intersecting adaptive deformable surface for complex boundary extraction from volumetric images , 2001, Comput. Graph..

[92]  Sébastien Ourselin,et al.  Fast free-form deformation using graphics processing units , 2010, Comput. Methods Programs Biomed..

[93]  Simon K. Warfield,et al.  A normative spatiotemporal MRI atlas of the fetal brain for automatic segmentation and analysis of early brain growth , 2017, Scientific Reports.

[94]  Simon K. Warfield,et al.  Segmentation of newborn brain MRI , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[95]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[96]  Ben Glocker,et al.  Encoding atlases by randomized classification forests for efficient multi-atlas label propagation , 2014, Medical Image Anal..

[97]  Max A. Viergever,et al.  Automatic Segmentation of Eight Tissue Classes in Neonatal Brain MRI , 2013, PloS one.

[98]  Nicholas Ayache,et al.  Spherical Demons: Fast Diffeomorphic Landmark-Free Surface Registration , 2010, IEEE Transactions on Medical Imaging.

[99]  Nicholas Ayache,et al.  A Log-Euclidean Framework for Statistics on Diffeomorphisms , 2006, MICCAI.

[100]  Brian B. Avants,et al.  N4ITK: Improved N3 Bias Correction , 2010, IEEE Transactions on Medical Imaging.

[101]  Marko Wilke,et al.  Assessment of spatial normalization of whole‐brain magnetic resonance images in children , 2002, Human brain mapping.

[102]  Daniel Rueckert,et al.  Automatic segmentation and reconstruction of the cortex from neonatal MRI , 2007, NeuroImage.

[103]  Michael I. Miller,et al.  Evolutions equations in computational anatomy , 2009, NeuroImage.

[104]  Timothy F. Cootes,et al.  The Use of Active Shape Models for Locating Structures in Medical Images , 1993, IPMI.

[105]  D. Louis Collins,et al.  Automatic 3‐D model‐based neuroanatomical segmentation , 1995 .

[106]  Daniel Rueckert,et al.  The developing human connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction , 2017, NeuroImage.

[107]  R. Bajcsy,et al.  Elastic Matching: Continuum Mechanical and Probabilistic Analysis , 1999 .

[108]  P. Grant,et al.  Quantitative Folding Pattern Analysis of Early Primary Sulci in Human Fetuses with Brain Abnormalities , 2017, American Journal of Neuroradiology.

[109]  A. Khotanzad,et al.  A physics-based coordinate transformation for 3-D image matching , 1997, IEEE Transactions on Medical Imaging.

[110]  Barbara Lom,et al.  Looking Inside the Brain: The Power of Neuroimaging. , 2015 .

[111]  David J. Hawkes,et al.  Deformations Incorporating Rigid Structures , 1996, Comput. Vis. Image Underst..

[112]  J. P. Lewis,et al.  Fast Template Matching , 2009 .

[113]  Daniel Rueckert,et al.  Construction of a fetal spatio-temporal cortical surface atlas from in utero MRI: Application of spectral surface matching , 2015, NeuroImage.

[114]  Mark Jenkinson,et al.  MSM: A new flexible framework for Multimodal Surface Matching , 2014, NeuroImage.

[115]  Suyash P. Awate,et al.  Clinical Neonatal Brain MRI Segmentation Using Adaptive Nonparametric Data Models and Intensity-Based Markov Priors , 2007, MICCAI.

[116]  Richard M. Leahy,et al.  BrainSuite: An Automated Cortical Surface Identification Tool , 2000, MICCAI.

[117]  Shu Liao,et al.  A novel framework for longitudinal atlas construction with groupwise registration of subject image sequences , 2011 .

[118]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[119]  Brian B. Avants,et al.  The optimal template effect in hippocampus studies of diseased populations , 2010, NeuroImage.

[120]  Xiao Han Learning-Boosted Label Fusion for Multi-atlas Auto-Segmentation , 2013, MLMI.

[121]  Marc Modat,et al.  LoAd: A locally adaptive cortical segmentation algorithm , 2011, NeuroImage.

[122]  P. Thomas Fletcher,et al.  Population Shape Regression from Random Design Data , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[123]  John H. Gilmore,et al.  Automatic segmentation of MR images of the developing newborn brain , 2005, Medical Image Anal..

[124]  Reinhard Grebe,et al.  A Neonatal Bimodal MR-CT Head Template , 2017, PloS one.

[125]  Dinggang Shen,et al.  iBEAT: A Toolbox for Infant Brain Magnetic Resonance Image Processing , 2012, Neuroinformatics.

[126]  Bruce Fischl,et al.  Combined Volumetric and Surface Registration , 2009, IEEE Transactions on Medical Imaging.

[127]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[128]  Brian B. Avants,et al.  Explicit B-spline regularization in diffeomorphic image registration , 2013, Front. Neuroinform..

[129]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[130]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[131]  Dinggang Shen,et al.  Automatic segmentation of neonatal images using convex optimization and coupled level sets , 2011, NeuroImage.

[132]  P. Thomas Fletcher,et al.  Finite-Dimensional Lie Algebras for Fast Diffeomorphic Image Registration , 2015, IPMI.

[133]  Tomoki Arichi,et al.  A dedicated neonatal brain imaging system , 2016, Magnetic resonance in medicine.

[134]  Yaozong Gao,et al.  LINKS: Learning-based multi-source IntegratioN frameworK for Segmentation of infant brain images , 2014, NeuroImage.

[135]  Jean-Philippe Thirion,et al.  Image matching as a diffusion process: an analogy with Maxwell's demons , 1998, Medical Image Anal..

[136]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[137]  L. Younes,et al.  Statistics on diffeomorphisms via tangent space representations , 2004, NeuroImage.

[138]  Mads Nielsen,et al.  Kernel Bundle Diffeomorphic Image Registration Using Stationary Velocity Fields and Wendland Basis Functions , 2016, IEEE Transactions on Medical Imaging.

[139]  Hamid Abrishami Moghaddam,et al.  A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: Preliminary results , 2007, NeuroImage.

[140]  Nicholas Ayache,et al.  Geometric Means in a Novel Vector Space Structure on Symmetric Positive-Definite Matrices , 2007, SIAM J. Matrix Anal. Appl..

[141]  Gary E. Christensen,et al.  Large Deformation Inverse Consistent Elastic Image Registration , 2003, IPMI.

[142]  Daniel Rueckert,et al.  A deformable model for the reconstruction of the neonatal cortex , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[143]  Anders M. Dale,et al.  Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex , 2001, IEEE Transactions on Medical Imaging.

[144]  Brian B. Avants,et al.  Shape averaging with diffeomorphic flows for atlas creation , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[145]  Sébastien Ourselin,et al.  AdaPT: An adaptive preterm segmentation algorithm for neonatal brain MRI , 2013, NeuroImage.

[146]  Jerry L. Prince,et al.  Snakes, shapes, and gradient vector flow , 1998, IEEE Trans. Image Process..

[147]  J. Mangin,et al.  Atlas-Free Surface Reconstruction of the Cortical Grey-White Interface in Infants , 2011, PloS one.

[148]  D. Louis Collins,et al.  Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults , 2006, MICCAI.

[149]  Mary Rutherford,et al.  Brain Maturation After Preterm Birth , 2013, Science Translational Medicine.

[150]  Mert R. Sabuncu,et al.  Multi-atlas segmentation of biomedical images: A survey , 2014, Medical Image Anal..

[151]  Jerry L. Prince,et al.  Cortical reconstruction using implicit surface evolution: Accuracy and precision analysis , 2006, NeuroImage.

[152]  Alain Trouvé,et al.  Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms , 2005, International Journal of Computer Vision.

[153]  Dinggang Shen,et al.  Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping , 2006, Medical Image Anal..

[154]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[155]  Chris Adamson,et al.  A new neonatal cortical and subcortical brain atlas: the Melbourne Children's Regional Infant Brain (M-CRIB) atlas , 2017, NeuroImage.

[156]  Stephen M Smith,et al.  Fast robust automated brain extraction , 2002, Human brain mapping.

[157]  Salvador Olmos,et al.  A new algorithm for the computation of the group logarithm of diffeomorphisms , 2008 .

[158]  Ann-Beth Moller,et al.  National, regional, and worldwide estimates of preterm birth rates in the year 2010 with time trends since 1990 for selected countries: a systematic analysis and implications , 2012, The Lancet.

[159]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[160]  A. Schleicher,et al.  The ontogeny of human gyrification. , 1995, Cerebral cortex.

[161]  Xavier Pennec,et al.  Sparse Multi-Scale Diffeomorphic Registration: The Kernel Bundle Framework , 2012, Journal of Mathematical Imaging and Vision.

[162]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[163]  Lana Vasung,et al.  The role of neuroimaging in predicting neurodevelopmental outcomes of preterm neonates. , 2014, Clinics in perinatology.

[164]  Reinhard Grebe,et al.  Symmetric brain atlas template for newborns brain asymmetry studies , 2013, 2013 21st Iranian Conference on Electrical Engineering (ICEE).

[165]  Christos Davatzikos,et al.  Comparative Evaluation of Registration Algorithms in Different Brain Databases With Varying Difficulty: Results and Insights , 2014, IEEE Transactions on Medical Imaging.

[166]  Richard M. Leahy,et al.  Automated graph-based analysis and correction of cortical volume topology , 2001, IEEE Transactions on Medical Imaging.

[167]  X. Pennec,et al.  Comparing algorithms for diffeomorphic registration: Stationary LDDMM and Diffeomorphic Demons , 2009 .

[168]  Sébastien Ourselin,et al.  Inverse-Consistent Symmetric Free Form Deformation , 2012, WBIR.

[169]  Koenraad Van Leemput,et al.  Automated model-based bias field correction of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[170]  Jean Meunier,et al.  Automatic Computation of Average Brain Models , 1998, MICCAI.

[171]  W. Eric L. Grimson,et al.  A Bayesian model for joint segmentation and registration , 2006, NeuroImage.

[172]  Laurent D. Cohen,et al.  Finite-Element Methods for Active Contour Models and Balloons for 2-D and 3-D Images , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[173]  Ali R. Khan,et al.  Symmetric Data Attachment Terms for Large Deformation Image Registration , 2007, IEEE Transactions on Medical Imaging.

[174]  Max A. Viergever,et al.  Automatic segmentation of the preterm neonatal brain with MRI using supervised classification , 2013, Medical Imaging.

[175]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[176]  Jayaram K. Udupa,et al.  New variants of a method of MRI scale standardization , 2000, IEEE Transactions on Medical Imaging.

[177]  Daniel Rueckert,et al.  Groupwise Combined Segmentation and Registration for Atlas Construction , 2007, MICCAI.

[178]  Jyrki Lötjönen,et al.  Robust whole-brain segmentation: Application to traumatic brain injury , 2015, Medical Image Anal..

[179]  M Wilke,et al.  Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data , 2003, Magnetic resonance in medicine.

[180]  Dinggang Shen,et al.  Consistent Spatial-Temporal Longitudinal Atlas Construction for Developing Infant Brains , 2016, IEEE Transactions on Medical Imaging.

[181]  Paul Suetens,et al.  Temporal subtraction of thorax CR images using a statistical deformation model , 2003, IEEE Transactions on Medical Imaging.

[182]  Daniel Rueckert,et al.  Simultaneous Multi-scale Registration Using Large Deformation Diffeomorphic Metric Mapping , 2011, IEEE Transactions on Medical Imaging.

[183]  Dinggang Shen,et al.  Neonatal brain image segmentation in longitudinal MRI studies , 2010, NeuroImage.

[184]  Michael I. Miller,et al.  Volumetric transformation of brain anatomy , 1997, IEEE Transactions on Medical Imaging.

[185]  Alan C. Evans,et al.  Proximity Constraints in Deformable Models for Cortical Surface Identification , 1998, MICCAI.

[186]  M. Hebert,et al.  The Representation, Recognition, and Locating of 3-D Objects , 1986 .

[187]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[188]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[189]  J. Gilmore,et al.  Longitudinally guided level sets for consistent tissue segmentation of neonates , 2013, Human brain mapping.

[190]  Karl Rohr,et al.  A New Class of Elastic Body Splines for Nonrigid Registration of Medical Images , 2005, Journal of Mathematical Imaging and Vision.

[191]  Paul A. Yushkevich,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[192]  R. Rabbitt,et al.  3D brain mapping using a deformable neuroanatomy. , 1994, Physics in medicine and biology.

[193]  Brian B. Avants,et al.  An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data , 2011, Neuroinformatics.

[194]  Alan C. Evans,et al.  NEOCIVET: Towards accurate morphometry of neonatal gyrification and clinical applications in preterm newborns , 2016, NeuroImage.

[195]  J C Mazziotta,et al.  Automated image registration: II. Intersubject validation of linear and nonlinear models. , 1998, Journal of computer assisted tomography.

[196]  Monica Hernandez,et al.  Contributions to 3D Diffeomorphic Atlas Estimation: Application to Brain Images , 2007, MICCAI.

[197]  Mert R. Sabuncu,et al.  A Cautionary Analysis of STAPLE Using Direct Inference of Segmentation Truth , 2014, MICCAI.

[198]  Colin Studholme,et al.  Spatially adapted augmentation of age-specific atlas-based segmentation using patch-based priors , 2014, Medical Imaging.

[199]  Katrien van Driessen,et al.  A Fast Algorithm for the Minimum Covariance Determinant Estimator , 1999, Technometrics.

[200]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[201]  Simon K. Warfield,et al.  Automatic segmentation of newborn brain MRI , 2009, NeuroImage.

[202]  David Gur,et al.  Bidirectional elastic image registration using B-spline affine transformation , 2014, Comput. Medical Imaging Graph..

[203]  D Rivière,et al.  BrainVISA: an extensible software environment for sharing multimodal neuroimaging data and processing tools , 2009, NeuroImage.

[204]  Stefan Klein,et al.  SimpleElastix: A User-Friendly, Multi-lingual Library for Medical Image Registration , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[205]  Chunming Li,et al.  Active contours driven by local Gaussian distribution fitting energy , 2009, Signal Process..

[206]  Yali Amit,et al.  A Nonlinear Variational Problem for Image Matching , 1994, SIAM J. Sci. Comput..

[207]  U. Grenander,et al.  Computational anatomy: an emerging discipline , 1998 .

[208]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[209]  Xavier Pennec,et al.  Kernel Bundle EPDiff: Evolution Equations for Multi-scale Diffeomorphic Image Registration , 2011, SSVM.

[210]  Karl Rohr,et al.  Physics-based elastic registration using non-radial basis functions and including landmark localization uncertainties , 2008, Comput. Vis. Image Underst..

[211]  J V Hajnal,et al.  Motion-Compensation Techniques in Neonatal and Fetal MR Imaging , 2013, American Journal of Neuroradiology.

[212]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[213]  Olivier D. Faugeras,et al.  Flows of diffeomorphisms for multimodal image registration , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[214]  Michael Unser,et al.  Fast parametric elastic image registration , 2003, IEEE Trans. Image Process..

[215]  Dinggang Shen,et al.  Detail‐preserving construction of neonatal brain atlases in space‐frequency domain , 2016, Human brain mapping.

[216]  J. Hajnal,et al.  Abnormal Cortical Development after Premature Birth Shown by Altered Allometric Scaling of Brain Growth , 2006, PLoS medicine.

[217]  Lawrence H. Staib,et al.  Physical model-based non-rigid registration incorporating statistical shape information , 2000, Medical Image Anal..

[218]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[219]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[220]  Jean Meunier,et al.  Average Brain Models: A Convergence Study , 2000, Comput. Vis. Image Underst..

[221]  Daniel Rueckert,et al.  Regional growth and atlasing of the developing human brain , 2016, NeuroImage.

[222]  Max A. Viergever,et al.  Automatic Segmentation of MR Brain Images With a Convolutional Neural Network , 2016, IEEE Transactions on Medical Imaging.

[223]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[224]  Marc Alexa,et al.  Linear combination of transformations , 2002, ACM Trans. Graph..

[225]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[226]  Christos Davatzikos,et al.  Using a deformable surface model to obtain a shape representation of the cortex , 1996, IEEE Trans. Medical Imaging.

[227]  Shuiwang Ji,et al.  Deep convolutional neural networks for multi-modality isointense infant brain image segmentation , 2015, NeuroImage.

[228]  A. Vita,et al.  Progressive loss of cortical gray matter in schizophrenia: a meta-analysis and meta-regression of longitudinal MRI studies , 2012, Translational Psychiatry.

[229]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[230]  Simon K. Warfield,et al.  Highly Accurate Segmentation of Brain Tissue and Subcortical Gray Matter from Newborn MRI , 2006, MICCAI.

[231]  D. Louis Collins,et al.  Tuning and Comparing Spatial Normalization Methods , 2003, MICCAI.

[232]  Brian Avants,et al.  Automatic Registration-Based Segmentation for Neonatal Brains Using ANTs and Atropos , 2012 .

[233]  V. Arsigny,et al.  Exponential Barycenters of the Canonical Cartan Connection and Invariant Means on Lie Groups , 2013 .

[234]  Alan C. Evans,et al.  A fully automatic and robust brain MRI tissue classification method , 2003, Medical Image Anal..

[235]  Zoltán Molnár,et al.  The Long and the Short of it: Gene and Environment Interactions During Early Cortical Development and Consequences for Long-Term Neurological Disease , 2012, Front. Psychiatry.

[236]  P. Thomas Fletcher,et al.  A vector momenta formulation of diffeomorphisms for improved geodesic regression and atlas construction , 2013, 2013 IEEE 10th International Symposium on Biomedical Imaging.

[237]  M. Staring,et al.  A rigidity penalty term for nonrigid registration. , 2007, Medical physics.

[238]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[239]  Oualid M. Benkarim,et al.  Building an Ensemble of Complementary Segmentation Methods by Exploiting Probabilistic Estimates , 2016, MLMI@MICCAI.

[240]  Alejandro F. Frangi,et al.  Temporal diffeomorphic free-form deformation: Application to motion and strain estimation from 3D echocardiography , 2012, Medical Image Anal..

[241]  Colin Studholme,et al.  Early folding patterns and asymmetries of the normal human brain detected from in utero MRI. , 2012, Cerebral cortex.

[242]  S. Maier,et al.  Microstructural Development of Human Newborn Cerebral White Matter Assessed in Vivo by Diffusion Tensor Magnetic Resonance Imaging , 1998, Pediatric Research.

[243]  Pierre-Louis Bazin,et al.  Homeomorphic brain image segmentation with topological and statistical atlases , 2008, Medical Image Anal..

[244]  Morten Bro-Nielsen,et al.  Fast Fluid Registration of Medical Images , 1996, VBC.

[245]  Koenraad Van Leemput,et al.  Automated model-based tissue classification of MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[246]  Ben Glocker,et al.  Deformable medical image registration: setting the state of the art with discrete methods. , 2011, Annual review of biomedical engineering.

[247]  Dinggang Shen,et al.  RABBIT: Rapid alignment of brains by building intermediate templates , 2009, NeuroImage.

[248]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[249]  J. Modersitzki,et al.  A unified approach to fast image registration and a new curvature based registration technique , 2004 .

[250]  Hong Wang,et al.  Abnormal Cerebral Structure Is Present at Term in Premature Infants , 2005, Pediatrics.

[251]  I. Aharon,et al.  Three‐dimensional mapping of cortical thickness using Laplace's Equation , 2000, Human brain mapping.

[252]  Nicholas Ayache,et al.  Understanding the "Demon's Algorithm": 3D Non-rigid Registration by Gradient Descent , 1999, MICCAI.

[253]  Hervé Delingette,et al.  LogDemons Revisited: Consistent Regularisation and Incompressibility Constraint for Soft Tissue Tracking in Medical Images , 2010, MICCAI.

[254]  Daniel Rueckert,et al.  Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data , 2015, MICCAI 2015.

[255]  Joseph V. Hajnal,et al.  Sensitivity Encoding for Aligned Multishot Magnetic Resonance Reconstruction , 2016, IEEE Transactions on Computational Imaging.

[256]  Leo Grady,et al.  Spectral Log-Demons: Diffeomorphic Image Registration with Very Large Deformations , 2013, International Journal of Computer Vision.

[257]  Peter Lorenzen,et al.  Unbiased Atlas Formation Via Large Deformations Metric Mapping , 2005, MICCAI.

[258]  Sébastien Ourselin,et al.  A parallel-friendly normalized mutual information gradient for free-form registration , 2009, Medical Imaging.

[259]  Arno Klein,et al.  Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration , 2009, NeuroImage.

[260]  Nicholas Ayache,et al.  Polyrigid and polyaffine transformations: A novel geometrical tool to deal with non-rigid deformations - Application to the registration of histological slices , 2005, Medical Image Anal..

[261]  Brian B. Avants,et al.  Directly Manipulated Free-Form Deformation Image Registration , 2009, IEEE Transactions on Image Processing.

[262]  M A Rutherford,et al.  Magnetic resonance imaging of the brain in very preterm infants: visualization of the germinal matrix, early myelination, and cortical folding. , 1998, Pediatrics.

[263]  VekslerOlga,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001 .

[264]  Alejandro F. Frangi,et al.  Muliscale Vessel Enhancement Filtering , 1998, MICCAI.

[265]  Michael I. Miller,et al.  Multi-contrast large deformation diffeomorphic metric mapping for diffusion tensor imaging , 2009, NeuroImage.

[266]  Nicholas Ayache,et al.  Brain Transfer: Spectral Analysis of Cortical Surfaces and Functional Maps , 2015, IPMI.

[267]  Laura Gui,et al.  Morphology-driven automatic segmentation of MR images of the neonatal brain , 2012, Medical Image Anal..

[268]  Colin Studholme,et al.  A template free approach to volumetric spatial normalization of brain anatomy , 2004, Pattern Recognit. Lett..

[269]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[270]  Daniel Rueckert,et al.  Nonrigid free-form registration using landmark-based statistical deformation models , 2012, Medical Imaging.

[271]  Tomas Akenine-Möller,et al.  A Fast Triangle-Triangle Intersection Test , 1997, J. Graphics, GPU, & Game Tools.

[272]  Anqi Qiu,et al.  Population Differences in Brain Morphology and Microstructure among Chinese, Malay, and Indian Neonates , 2012, PloS one.

[273]  Daniel Rueckert,et al.  Consistent groupwise non-rigid registration for atlas construction , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[274]  Fabrice Heitz,et al.  Symmetric Nonrigid Image Registration: Application to Average Brain Templates Construction , 2008, MICCAI.

[275]  Daniel Rueckert,et al.  Magnetic Resonance Imaging of the Newborn Brain: Automatic Segmentation of Brain Images into 50 Anatomical Regions , 2013, PloS one.

[276]  Max A. Viergever,et al.  elastix: A Toolbox for Intensity-Based Medical Image Registration , 2010, IEEE Transactions on Medical Imaging.

[277]  Xiao Yang,et al.  Fast Predictive Image Registration , 2016, LABELS/DLMIA@MICCAI.

[278]  Alan C. Evans,et al.  Quantitative in vivo MRI measurement of cortical development in the fetus , 2011, Brain Structure and Function.

[279]  Andrew Lockhart,et al.  Imaging as a biomarker in drug discovery for Alzheimer’s disease: is MRI a suitable technology? , 2014, Alzheimer's Research & Therapy.

[280]  Daniel Rueckert,et al.  Group-wise parcellation of the cortex through multi-scale spectral clustering , 2016, NeuroImage.

[281]  Daniel Rueckert,et al.  Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest , 2008, NeuroImage.

[282]  Daniel Rueckert,et al.  A review on automatic fetal and neonatal brain MRI segmentation , 2017, NeuroImage.

[283]  David C. Van Essen,et al.  Comparison of cortical folding measures for evaluation of developing human brain , 2016, NeuroImage.

[284]  Jinxiang Dong,et al.  A Local Registration Approach of Medical Images with Niche Genetic Algorithm , 2006, 2006 10th International Conference on Computer Supported Cooperative Work in Design.

[285]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[286]  Seungyong Lee,et al.  Injectivity Conditions of 2D and 3D Uniform Cubic B-Spline Functions , 2000, Graph. Model..

[287]  Ahmed Serag Spatio-temporal modeling and analysis of brain development , 2012 .

[288]  C. Studholme Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping. , 2011, Annual review of biomedical engineering.

[289]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[290]  Jyrki Lötjönen,et al.  Multi-class brain segmentation using atlas propagation and EM-based refinement , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[291]  Benjamin Berkels,et al.  Survey of Non-Rigid Registration Tools in Medicine , 2017, Journal of Digital Imaging.

[292]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[293]  Michael Unser,et al.  Multidimensional elastic registration of images using splines , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[294]  Paul Suetens,et al.  Construction of a Brain Template from MR Images Using State-of-the-Art Registration and Segmentation Techniques , 2004, MICCAI.

[295]  Josef Kittler,et al.  Floating search methods in feature selection , 1994, Pattern Recognit. Lett..

[296]  Jerry L. Prince,et al.  An active contour model for mapping the cortex , 1995, IEEE Trans. Medical Imaging.

[297]  Dinggang Shen,et al.  CENTS: Cortical enhanced neonatal tissue segmentation , 2011, Human brain mapping.

[298]  Brian B. Avants,et al.  Bias in estimation of hippocampal atrophy using deformation-based morphometry arises from asymmetric global normalization: An illustration in ADNI 3 T MRI data , 2010, NeuroImage.

[299]  Josien P. W. Pluim,et al.  Evaluation of Optimization Methods for Nonrigid Medical Image Registration Using Mutual Information and B-Splines , 2007, IEEE Transactions on Image Processing.

[300]  Alain Trouvé,et al.  Diffeomorphisms Groups and Pattern Matching in Image Analysis , 1998, International Journal of Computer Vision.

[301]  Guido Gerig,et al.  Spatiotemporal Atlas Estimation for Developmental Delay Detection in Longitudinal Datasets , 2009, MICCAI.

[302]  Daniel Rueckert,et al.  Magnetic resonance imaging of the newborn brain: Manual segmentation of labelled atlases in term-born and preterm infants , 2012, NeuroImage.

[303]  Scott Holland,et al.  Infant brain probability templates for MRI segmentation and normalization , 2008, NeuroImage.

[304]  Nicholas Ayache,et al.  A Fast and Log-Euclidean Polyaffine Framework for Locally Linear Registration , 2009, Journal of Mathematical Imaging and Vision.

[305]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[306]  L. R. Dice Measures of the Amount of Ecologic Association Between Species , 1945 .

[307]  D. Louis Collins,et al.  Unbiased average age-appropriate atlases for pediatric studies , 2011, NeuroImage.

[308]  Xiao Han,et al.  Cortical surface reconstruction using a topology preserving geometric deformable model , 2001, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA 2001).

[309]  Michael I. Miller,et al.  Multi-contrast human neonatal brain atlas: Application to normal neonate development analysis , 2011, NeuroImage.

[310]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[311]  Pramod K. Varshney,et al.  Mutual information-based CT-MR brain image registration using generalized partial volume joint histogram estimation , 2003, IEEE Transactions on Medical Imaging.

[312]  David C. Van Essen,et al.  Cortical cartography and Caret software , 2012, NeuroImage.

[313]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[314]  Carole L. Palumbo,et al.  Role of Neuroimaging , 2006 .

[315]  Michael Unser,et al.  Optimization of mutual information for multiresolution image registration , 2000, IEEE Trans. Image Process..

[316]  Nicholas Ayache,et al.  Grid powered nonlinear image registration with locally adaptive regularization , 2004, Medical Image Anal..

[317]  Peter Lorenzen,et al.  Multi-modal image set registration and atlas formation , 2006, Medical Image Anal..

[318]  Benoit M. Dawant,et al.  Neural-network-based segmentation of multi-modal medical images: a comparative and prospective study , 1993, IEEE Trans. Medical Imaging.

[319]  Xavier Pennec,et al.  A Multi-scale Kernel Bundle for LDDMM: Towards Sparse Deformation Description across Space and Scales , 2011, IPMI.

[320]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[321]  Gilles Bertrand,et al.  Simple points, topological numbers and geodesic neighborhoods in cubic grids , 1994, Pattern Recognit. Lett..

[322]  Luigi di Stefano,et al.  An efficient algorithm for exhaustive template matching based on normalized cross correlation , 2003, 12th International Conference on Image Analysis and Processing, 2003.Proceedings..

[323]  Bruce Fischl,et al.  Geometrically Accurate Topology-Correction of Cortical Surfaces Using Nonseparating Loops , 2007, IEEE Transactions on Medical Imaging.

[324]  Nikos Paragios,et al.  Discrete symmetric image registration , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[325]  R. Bajcsy,et al.  A computerized system for the elastic matching of deformed radiographic images to idealized atlas images. , 1983, Journal of computer assisted tomography.

[326]  Dinggang Shen,et al.  Learning-based deformation estimation for fast non-rigid registration , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[327]  David E. Reynolds,et al.  Automatic segmentation , 1986 .

[328]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[329]  Petronella Anbeek,et al.  Probabilistic Brain Tissue Segmentation in Neonatal Magnetic Resonance Imaging , 2008, Pediatric Research.

[330]  Jerry L. Prince,et al.  Finding the Brain Cortex Using Fuzzy Segmentation, Isosurfaces, and Deformable Surface Models , 1997, IPMI.

[331]  Colin Studholme,et al.  A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation , 2010, NeuroImage.

[332]  Paul M. Thompson,et al.  Inverse Consistent Mapping in 3D Deformable Image Registration: Its Construction and Statistical Properties , 2005, IPMI.

[333]  Aaron Carass,et al.  Consistent cortical reconstruction and multi-atlas brain segmentation , 2016, NeuroImage.

[334]  D. Louis Collins,et al.  ANIMAL+INSECT: Improved Cortical Structure Segmentation , 1999, IPMI.

[335]  Scott Holland,et al.  Template-O-Matic: A toolbox for creating customized pediatric templates , 2008, NeuroImage.

[336]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[337]  F. Lazeyras,et al.  Mapping the early cortical folding process in the preterm newborn brain. , 2008, Cerebral cortex.

[338]  Demetri Terzopoulos,et al.  Deformable models , 2000, The Visual Computer.

[339]  Aaron Carass,et al.  Erratum to: The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software , 2010, Neuroinformatics.

[340]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[341]  Dinggang Shen,et al.  Constructing 4D Infant Cortical Surface Atlases Based on Dynamic Developmental Trajectories of the Cortex , 2014, MICCAI.

[342]  Roman Goldenberg,et al.  Cortex segmentation: a fast variational geometric approach , 2002, IEEE Transactions on Medical Imaging.

[343]  Colin Studholme,et al.  Intersection Based Motion Correction of Multislice MRI for 3-D in Utero Fetal Brain Image Formation , 2010, IEEE Transactions on Medical Imaging.

[344]  David J. Hawkes,et al.  A three-component deformation model for image-guided surgery , 1998, Medical Image Anal..

[345]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[346]  Monica Hernandez Gauss–Newton inspired preconditioned optimization in large deformation diffeomorphic metric mapping , 2014, Physics in medicine and biology.

[347]  Ernesto Zacur,et al.  Algorithms for computing the group exponential of diffeomorphisms: Performance evaluation , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[348]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[349]  Alain Trouvé,et al.  Geodesic Shooting for Computational Anatomy , 2006, Journal of Mathematical Imaging and Vision.

[350]  Karl Rohr,et al.  Radial basis functions with compact support for elastic registration of medical images , 2001, Image Vis. Comput..

[351]  Simon K. Warfield,et al.  Construction of a Deformable Spatiotemporal MRI Atlas of the Fetal Brain: Evaluation of Similarity Metrics and Deformation Models , 2014, MICCAI.

[352]  Jan Modersitzki,et al.  Curvature Based Image Registration , 2004, Journal of Mathematical Imaging and Vision.

[353]  Monica Hernandez,et al.  Registration of Anatomical Images Using Paths of Diffeomorphisms Parameterized with Stationary Vector Field Flows , 2009, International Journal of Computer Vision.

[354]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[355]  Brian B. Avants,et al.  Evaluation of automatic neonatal brain segmentation algorithms: The NeoBrainS12 challenge , 2015, Medical Image Anal..

[356]  François-Xavier Vialard,et al.  Geodesic Regression for Image Time-Series , 2011, MICCAI.

[357]  Joseph V. Hajnal,et al.  Development of cortical microstructure in the preterm human brain , 2013, Proceedings of the National Academy of Sciences.

[358]  Guy Marchal,et al.  Multimodality image registration by maximization of mutual information , 1997, IEEE Transactions on Medical Imaging.

[359]  Jennifer L. Cuzzocreo,et al.  Segmentation of Brain Images Using Adaptive Atlases with Application to Ventriculomegaly , 2011, IPMI.

[360]  Nicholas Ayache,et al.  The Correlation Ratio as a New Similarity Measure for Multimodal Image Registration , 1998, MICCAI.

[361]  J. C. Dunn,et al.  A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters , 1973 .

[362]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[363]  Torsten Rohlfing,et al.  Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint , 2003, IEEE Transactions on Medical Imaging.

[364]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[365]  Adil Masood Siddiqui,et al.  A locally constrained radial basis function for registration and warping of images , 2009, Pattern Recognit. Lett..

[366]  J. Mazziotta,et al.  Regional Spatial Normalization: Toward an Optimal Target , 2001, Journal of computer assisted tomography.

[367]  Colin Studholme,et al.  An overlap invariant entropy measure of 3D medical image alignment , 1999, Pattern Recognit..

[368]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[369]  Daniel Rueckert,et al.  LISA: Longitudinal image registration via spatio-temporal atlases , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[370]  Donald Meagher,et al.  Geometric modeling using octree encoding , 1982, Comput. Graph. Image Process..

[371]  Babak A. Ardekani,et al.  Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans , 2005, Journal of Neuroscience Methods.

[372]  Richard M. Leahy,et al.  Surface-based labeling of cortical anatomy using a deformable atlas , 1997, IEEE Transactions on Medical Imaging.

[373]  Julia A. Schnabel,et al.  Non-rigid chest image registration with preservation of topology and rigid structures , 2011 .

[374]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[375]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[376]  Paul Suetens,et al.  Non-rigid brain image registration using a statistical deformation model , 2006, SPIE Medical Imaging.

[377]  G. Christensen,et al.  k 3D Deformable Magnetic Resonance Textbook Based on Elasticity , 1994 .

[378]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[379]  L. Younes Shapes and Diffeomorphisms , 2010 .

[380]  Daniel Rueckert,et al.  Atlas selection strategy for automatic segmentation of pediatric brain MRIs into 83 ROIs , 2010, 2010 IEEE International Conference on Imaging Systems and Techniques.

[381]  Vann Chau,et al.  Slower Postnatal Growth Is Associated with Delayed Cerebral Cortical Maturation in Preterm Newborns , 2013, Science Translational Medicine.

[382]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[383]  D. Louis Collins,et al.  Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images , 1995, IEEE Trans. Medical Imaging.

[384]  Kaleem Siddiqi,et al.  Diffeomorphic Spectral Matching of Cortical Surfaces , 2013, IPMI.

[385]  Daniel Rueckert,et al.  Brain Extraction Using Label Propagation and Group Agreement: Pincram , 2015, PloS one.

[386]  Paul M. Thompson,et al.  A framework for computational anatomy , 2002 .

[387]  Timothy S. Coalson,et al.  A Surface-Based Analysis of Hemispheric Asymmetries and Folding of Cerebral Cortex in Term-Born Human Infants , 2010, The Journal of Neuroscience.