Living on the edge: a toy model for holographic reconstruction of algebras with centers

A bstractWe generalize the Pastawski-Yoshida-Harlow-Preskill (HaPPY) holographic quantum error-correcting code to provide a toy model for bulk gauge fields or linearized gravitons. The key new elements are the introduction of degrees of freedom on the links (edges) of the associated tensor network and their connection to further copies of the HaPPY code by an appropriate isometry. The result is a model in which boundary regions allow the reconstruction of bulk algebras with central elements living on the interior edges of the (greedy) entanglement wedge, and where these central elements can also be reconstructed from complementary bounda ry regions. In addition, the entropy of boundary regions receives both Ryu-Takayanagi-like contributions and further corrections that model the δArea4GN$$ \frac{\delta \mathrm{Area}}{4{G}_N} $$ term of Faulkner, Lewkowycz, and Maldacena. Comparison with Yang-Mills theory then suggests that this δArea4GN$$ \frac{\delta \mathrm{Area}}{4{G}_N} $$ term can be reinterpreted as a part of the bulk entropy of gravitons under an appropriate extension of the physical bulk Hilbert space.

[1]  Aron C. Wall,et al.  Geometric entropy and edge modes of the electromagnetic field , 2015, 1506.05792.

[2]  P. Buividovich,et al.  Entanglement entropy in gauge theories and the holographic principle for electric strings , 2008, 0806.3376.

[3]  J. Preskill,et al.  Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence , 2015, 1503.06237.

[4]  Zhao Yang,et al.  Bidirectional holographic codes and sub-AdS locality , 2015, 1510.03784.

[5]  Xi Dong,et al.  Bulk locality and quantum error correction in AdS/CFT , 2014, 1411.7041.

[6]  William Donnelly Entanglement entropy and nonabelian gauge symmetry , 2014, 1406.7304.

[7]  T. Takayanagi,et al.  Holographic Derivation of Entanglement Entropy from AdS/CFT , 2006, hep-th/0603001.

[8]  William Donnelly,et al.  Local subsystems in gauge theory and gravity , 2016, 1601.04744.

[9]  Xiao-Liang Qi,et al.  Exact holographic mapping and emergent space-time geometry , 2013, 1309.6282.

[10]  D. Harlow The Ryu–Takayanagi Formula from Quantum Error Correction , 2016, Communications in Mathematical Physics.

[11]  Aitor Lewkowycz,et al.  Quantum corrections to holographic entanglement entropy , 2013, 1307.2892.

[12]  H. Tasaki,et al.  On the definition of entanglement entropy in lattice gauge theories , 2015, 1502.04267.

[13]  T. Takayanagi,et al.  Aspects of Holographic Entanglement Entropy , 2006, hep-th/0605073.

[14]  William Donnelly,et al.  Decomposition of entanglement entropy in lattice gauge theory , 2011, 1109.0036.

[15]  P. Hayden,et al.  Holographic duality from random tensor networks , 2016, 1601.01694.

[16]  S. Trivedi,et al.  On the entanglement entropy for gauge theories , 2015, 1501.02593.

[17]  Aron C. Wall,et al.  Entanglement entropy of electromagnetic edge modes. , 2014, Physical review letters.

[18]  T. Takayanagi,et al.  Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. , 2006, Physical review letters.

[19]  Horacio Casini,et al.  Remarks on entanglement entropy for gauge fields , 2013, 1312.1183.

[20]  Riccardo D'Auria,et al.  KK Spectroscopy of Type IIB Supergravity on $AdS_{5} \times T^{11}$ , 1999 .