Toll-like receptor 9 contributes to recognition of Mycobacterium bovis Bacillus Calmette-Guérin by Flt3-ligand generated dendritic cells.

[1]  A. Sher,et al.  TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis , 2005, The Journal of experimental medicine.

[2]  Li Wu,et al.  Cutting Edge: Generation of Splenic CD8+ and CD8− Dendritic Cell Equivalents in Fms-Like Tyrosine Kinase 3 Ligand Bone Marrow Cultures1 , 2005, The Journal of Immunology.

[3]  Stefan Bauer,et al.  Endosomal Translocation of Vertebrate DNA Activates Dendritic Cells via TLR9-Dependent and -Independent Pathways 1 , 2005, The Journal of Immunology.

[4]  A. Sher,et al.  Maintenance of Pulmonary Th1 Effector Function in Chronic Tuberculosis Requires Persistent IL-12 Production , 2005, The Journal of Immunology.

[5]  B. Ryffel,et al.  Fatal Mycobacterium tuberculosis infection despite adaptive immune response in the absence of MyD88. , 2004, The Journal of clinical investigation.

[6]  A. Iwasaki,et al.  Toll-like receptor control of the adaptive immune responses , 2004, Nature Immunology.

[7]  Shizuo Akira,et al.  Toll-like receptor signalling , 2004, Nature Reviews Immunology.

[8]  A. Sher,et al.  MyD88-Deficient Mice Display a Profound Loss in Resistance to Mycobacterium tuberculosis Associated with Partially Impaired Th1 Cytokine and Nitric Oxide Synthase 2 Expression , 2004, Infection and Immunity.

[9]  L. Kremer,et al.  Toll-Like Receptor 2 (TLR2)-Dependent-Positive and TLR2-Independent-Negative Regulation of Proinflammatory Cytokines by Mycobacterial Lipomannans1 , 2004, The Journal of Immunology.

[10]  S. Akira,et al.  Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8 , 2004, Science.

[11]  Shizuo Akira,et al.  Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single-Stranded RNA , 2004, Science.

[12]  R. Modlin,et al.  The role of Toll-like receptors in combating mycobacteria. , 2004, Seminars in immunology.

[13]  B. Monks,et al.  TLR9 signals after translocating from the ER to CpG DNA in the lysosome , 2004, Nature Immunology.

[14]  J. Flynn,et al.  Immunology of tuberculosis. , 2003, Annual review of immunology.

[15]  Richard A Flavell,et al.  Upregulation of costimulatory molecules induced by lipopolysaccharide and double-stranded RNA occurs by Trif-dependent and Trif-independent pathways , 2003, Nature Immunology.

[16]  S. Akira,et al.  Selective contribution of IFN-α/β signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Michael D. Liang,et al.  TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG , 2003, Journal of leukocyte biology.

[18]  H. Debbabi,et al.  Toll-Like Receptor 4-Defective C3H/HeJ Mice Are Not More Susceptible than Other C3H Substrains to Infection with Mycobacterium tuberculosis , 2003, Infection and Immunity.

[19]  T. Geijtenbeek,et al.  Mycobacteria Target DC-SIGN to Suppress Dendritic Cell Function , 2003, The Journal of experimental medicine.

[20]  N. Reiling,et al.  Cutting Edge: Toll-Like Receptor (TLR)2- and TLR4-Mediated Pathogen Recognition in Resistance to Airborne Infection with Mycobacterium tuberculosis1 , 2002, The Journal of Immunology.

[21]  T. Ottenhoff,et al.  Innate Immunity to Mycobacterium tuberculosis , 2002, Clinical Microbiology Reviews.

[22]  Yong‐jun Liu,et al.  Mouse and human dendritic cell subtypes , 2002, Nature Reviews Immunology.

[23]  S. Akira,et al.  Small anti-viral compounds activate immune cells via the TLR7 MyD88–dependent signaling pathway , 2002, Nature Immunology.

[24]  R. Flavell,et al.  Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3 , 2001, Nature.

[25]  A. Aderem,et al.  Leptospiral lipopolysaccharide activates cells through a TLR2-dependent mechanism , 2001, Nature Immunology.

[26]  S. Akira,et al.  [Induction of direct antimicrobial activity through mammalian toll-like receptors]. , 2001, Pneumologie.

[27]  S. Akira,et al.  A Toll-like receptor recognizes bacterial DNA , 2000, Nature.

[28]  C. Maliszewski,et al.  Generation of murine dendritic cells from flt3-ligand-supplemented bone marrow cultures. , 2000, Blood.

[29]  Stefan H. E. Kaufmann,et al.  Is the development of a new tuberculosis vaccine possible? , 2000, Nature Medicine.

[30]  B. Ryffel,et al.  Fatal Mycobacterium bovis BCG infection in TNF-LT-α-deficient mice , 2000 .

[31]  A. Aderem,et al.  Toll-like receptor-2 mediates mycobacteria-induced proinflammatory signaling in macrophages. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  S. Akira,et al.  Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. , 1999, Immunity.

[33]  D. Golenbock,et al.  Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. , 1999, Journal of immunology.

[34]  B. Bloom,et al.  Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. , 1999, Science.

[35]  S. Akira,et al.  Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. , 1999, Journal of immunology.

[36]  J. Sedgwick,et al.  Structural deficiencies in granuloma formation in TNF gene-targeted mice underlie the heightened susceptibility to aerosol Mycobacterium tuberculosis infection, which is not compensated for by lymphotoxin. , 1999, Journal of immunology.

[37]  T. Jakob,et al.  Activation of cutaneous dendritic cells by CpG-containing oligodeoxynucleotides: a role for dendritic cells in the augmentation of Th1 responses by immunostimulatory DNA. , 1998, Journal of immunology.

[38]  S. Akira,et al.  Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. , 1998, Immunity.

[39]  R. Vabulas,et al.  Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells , 1998, European journal of immunology.

[40]  S. Kaufmann,et al.  Copyright © 1997, American Society for Microbiology Lethal Tuberculosis in Interleukin-6-Deficient Mutant Mice , 1997 .

[41]  K. Heeg,et al.  Macrophages sense pathogens via DNA motifs: induction of tumor necrosis factor‐α‐mediated shock , 1997, European journal of immunology.

[42]  K. Heeg,et al.  Bacterial DNA causes septic shock , 1997, Nature.

[43]  J. Flynn,et al.  IL-12 increases resistance of BALB/c mice to Mycobacterium tuberculosis infection. , 1995, Journal of immunology.

[44]  C. Lowenstein,et al.  Tumor necrosis factor-alpha is required in the protective immune response against Mycobacterium tuberculosis in mice. , 1995, Immunity.

[45]  G. Bishop,et al.  CpG motifs in bacterial DNA trigger direct B-cell activation , 1995, Nature.

[46]  Alan D. Roberts,et al.  The role of interleukin-12 in acquired immunity to Mycobacterium tuberculosis infection. , 1995, Immunology.

[47]  J. Swanson,et al.  Macrophage colony-stimulating factor (rM-CSF) stimulates pinocytosis in bone marrow-derived macrophages , 1989, The Journal of experimental medicine.

[48]  Y. Fujisawa,et al.  Antitumor activity of deoxyribonucleic acid fraction from Mycobacterium bovis BCG. I. Isolation, physicochemical characterization, and antitumor activity. , 1984, Journal of the National Cancer Institute.

[49]  B. Ryffel,et al.  Toll-like receptor 2-deficient mice succumb to Mycobacterium tuberculosis infection. , 2004, The American journal of pathology.

[50]  C Caux,et al.  Immunobiology of dendritic cells. , 2000, Annual review of immunology.