Overview and advances in a layered chiral helimagnet Cr1/3NbS2

[1]  D. Graf,et al.  Consequences of magnetic ordering in chiral Mn1/3NbS2 , 2019, Physical Review B.

[2]  J. Akimitsu,et al.  Anomalous spiked structures in ESR signals from the chiral helimagnet CrNb3S6 , 2019, Physical review B.

[3]  F. Xia,et al.  Electrically tunable physical properties of two-dimensional materials , 2019, Nano Today.

[4]  Motohiko Ezawa,et al.  Skyrmion-electronics: writing, deleting, reading and processing magnetic skyrmions toward spintronic applications , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  M. Weinert,et al.  Observation of orbital angular momentum in the chiral magnet CrNb3S6 by soft x-ray magnetic circular dichroism , 2019, Physical Review B.

[6]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[7]  G. Paterson,et al.  Order and disorder in the magnetization of the chiral crystal CrNb3S6 , 2019, Physical Review B.

[8]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[9]  Y. Togawa,et al.  Anomalous Nonreciprocal Electrical Transport on Chiral Magnetic Order. , 2019, Physical review letters.

[10]  A. S. Ovchinnikov,et al.  Anomalous Temperature Behavior of the Chiral Spin Helix in CrNb_{3}S_{6} Thin Lamellae. , 2019, Physical review letters.

[11]  H. Ebert,et al.  Electronic and magnetic properties of the 2H-NbS2 intercalated by 3d transition metal atoms , 2018, Zeitschrift für Naturforschung B.

[12]  E. Riedo,et al.  Nanoscale spin-wave circuits based on engineered reconfigurable spin-textures , 2018, Communications Physics.

[13]  N. Ghimire,et al.  Extended exchange interactions stabilize long-period magnetic structures in Cr1∕3NbS2 , 2018, Applied Physics Letters.

[14]  R. Fishman,et al.  Tuning Magnetic Soliton Phase via Dimensional Confinement in Exfoliated 2D Cr1/3NbS2 Thin Flakes. , 2018, Nano letters.

[15]  J. Akimitsu,et al.  Nonlinear magnetic responses at the phase boundaries around helimagnetic and skyrmion lattice phases in MnSi: Evaluation of robustness of noncollinear spin texture , 2018 .

[16]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[17]  Giuseppe Iannaccone,et al.  Quantum engineering of transistors based on 2D materials heterostructures , 2018, Nature Nanotechnology.

[18]  D. Mandrus,et al.  Magnetic field dependence of nonlinear magnetic response and tricritical point in the monoaxial chiral helimagnet Cr1/3NbS2 , 2018, Physical Review B.

[19]  Moumita Patra,et al.  All-spin logic operations: Memory device and reconfigurable computing , 2018, 1809.06609.

[20]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[21]  J. Akimitsu,et al.  Magnetic solitons and magnetic phase diagram of the hexagonal chiral crystal CrNb 3 S 6 in oblique magnetic fields , 2017 .

[22]  Y. Tokura,et al.  Emergence and magnetic-field variation of chiral-soliton lattice and skyrmion lattice in the strained helimagnet Cu 2 OSeO 3 , 2017 .

[23]  Y. Tokura,et al.  Emergent functions of quantum materials , 2017, Nature Physics.

[24]  K. Inoue,et al.  Chiral Soliton Lattice Formation in Monoaxial Helimagnet Yb(Ni1-xCux)3Al9 , 2017, 1709.08382.

[25]  F. Mushenok,et al.  Magnetic order in the structurally disordered helicoidal magnet Cr1/3NbS2: NMR at 53Cr nuclei , 2017 .

[26]  R. Das,et al.  Critical Behavior and Macroscopic Phase Diagram of the Monoaxial Chiral Helimagnet Cr1/3NbS2 , 2017, Scientific Reports.

[27]  A. Kis,et al.  2D transition metal dichalcogenides , 2017 .

[28]  Okumura Shun,et al.  Monte Carlo Study of Magnetoresistance in a Chiral Soliton Lattice , 2017 .

[29]  A. Morpurgo,et al.  Controlling the Topological Sector of Magnetic Solitons in Exfoliated Cr_{1/3}NbS_{2} Crystals. , 2017, Physical review letters.

[30]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[31]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[32]  Y. Tokura,et al.  Electrical magnetochiral effect induced by chiral spin fluctuations , 2017, Nature Communications.

[33]  R. Stamps,et al.  Magnetic anisotropy and conical phase transition in monoaxial chiral magnets , 2017 .

[34]  Kang L. Wang,et al.  Room-Temperature Skyrmion Shift Device for Memory Application. , 2017, Nano letters.

[35]  Inoue Katsuya,et al.  Symmetry, Structure, and Dynamics of Monoaxial Chiral Magnets , 2016 .

[36]  M. Koehler,et al.  Electronic structure of the chiral helimagnet and 3 d -intercalated transition metal dichalcogenide C r 1 / 3 Nb S 2 , 2016 .

[37]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[38]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[39]  H. Ebert,et al.  Electronic and magnetic properties of the 2H-NbS$_2$ intercalated by 3d transition metal atoms , 2016, 1607.05738.

[40]  Kato Yusuke,et al.  Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets , 2016 .

[41]  S. Bustingorry,et al.  Second-order magnetic critical points at finite magnetic fields: Revisiting Arrott plots , 2016 .

[42]  K. Inoue,et al.  Incommensurate-commensurate transitions in the monoaxial chiral helimagnet driven by the magnetic field , 2016, 1603.00755.

[43]  J. Akimitsu,et al.  Phase diagram of the chiral magnet Cr 1 /3 NbS 2 in a magnetic field , 2016 .

[44]  B. Hong,et al.  Exfoliation and Raman Spectroscopic Fingerprint of Few-Layer NiPS3 Van der Waals Crystals , 2016, Scientific Reports.

[45]  I. G. Bostrem,et al.  Magnetic soliton confinement and discretization effects arising from macroscopic coherence in a chiral spin soliton lattice , 2015 .

[46]  J. Akimitsu,et al.  Study of magnetic domain dynamics using nonlinear magnetic responses: Magnetic diagnostics of the itinerant magnet MnP , 2015 .

[47]  M Kubota,et al.  Large anisotropic deformation of skyrmions in strained crystal. , 2015, Nature nanotechnology.

[48]  J. Akimitsu,et al.  Investigation of structural changes in chiral magnet Cr1∕3NbS2 under application of pressure , 2015 .

[49]  N. Ghimire,et al.  Out-of-plane spin-orientation dependent magnetotransport properties in the anisotropic helimagnet Cr 1 / 3 NbS 2 , 2015, 1504.00916.

[50]  G. Schütz,et al.  Interfacial dominated ferromagnetism in nanograined ZnO: a μSR and DFT study , 2015, Scientific Reports.

[51]  P. Pattison,et al.  Structural disorder versus chiral magnetism in , 2015, 1503.01972.

[52]  E. Mello,et al.  Magnetic properties of the helimagnet Cr1/3NbS2 observed by μSR , 2015, 1501.03094.

[53]  N. Ghimire,et al.  Spin Structure of the Anisotropic Helimagnet Cr$_{1/3}$NbS$_2$ in a Magnetic Field , 2014, 1408.4327.

[54]  D. Marinin,et al.  Role of structural factors in formation of chiral magnetic soliton lattice in Cr1/3NbS2 , 2014, 1406.3729.

[55]  N. Avarvari,et al.  Electrical magnetochiral anisotropy in a bulk chiral molecular conductor , 2014, Nature Communications.

[56]  A. S. Ovchinnikov,et al.  Interlayer magnetoresistance due to chiral soliton lattice formation in hexagonal chiral magnet CrNb3S6. , 2013, Physical review letters.

[57]  A. Fert,et al.  Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.

[58]  Y. Togawa Small-angle electron scattering of magnetic fine structures. , 2013, Microscopy.

[59]  A. Fert,et al.  Skyrmions on the track. , 2013, Nature nanotechnology.

[60]  N. Ghimire,et al.  Magnetic phase transition in single crystals of the chiral helimagnet Cr 1 / 3 NbS 2 , 2012, 1209.2783.

[61]  C. Pfleiderer,et al.  Magnetic phase diagram of MnSi inferred from magnetization and ac susceptibility , 2012, 1206.5774.

[62]  Y. Tokura,et al.  Observation of magnetic excitations of Skyrmion crystal in a helimagnetic insulator Cu2OSeO3. , 2012, Physical review letters.

[63]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[64]  A. S. Ovchinnikov,et al.  Chiral magnetic soliton lattice on a chiral helimagnet. , 2012, Physical review letters.

[65]  T. Matsuda,et al.  Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. , 2012, Nano letters.

[66]  H. Braun Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons , 2012 .

[67]  P. Böni,et al.  Long-range crystalline nature of the Skyrmion lattice in MnSi. , 2011, Physical review letters.

[68]  Y. Tokura,et al.  Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.

[69]  Y. Tokura,et al.  Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.

[70]  S. Datta,et al.  Proposal for an all-spin logic device with built-in memory. , 2010, Nature nanotechnology.

[71]  J. Sinova,et al.  Anomalous hall effect , 2009, 0904.4154.

[72]  J. Akimitsu,et al.  Chiral helimagnetism in T1/3NbS2 (T=Cr and Mn) , 2009 .

[73]  J. Zaanen Fast Electrons Tie Quantum Knots , 2009, Science.

[74]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[75]  P. Böni,et al.  Topological Hall effect in the A phase of MnSi. , 2009, Physical review letters.

[76]  Hai Helen Li,et al.  Spintronic Memristor Through Spin-Torque-Induced Magnetization Motion , 2009, IEEE Electron Device Letters.

[77]  R. Hadimani,et al.  Determination of Curie temperature by Arrott plot technique in Gd5(SixGe1−x)4 for x>0.575 , 2008 .

[78]  U. Roessler,et al.  Critical properties in single crystals of Pr1-xPbxMnO3 , 2006, cond-mat/0610252.

[79]  C. Pfleiderer,et al.  Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.

[80]  Eiji Saitoh,et al.  Magnetic interactions in a ferromagnetic honeycomb nanoscale network , 2006 .

[81]  Gwyn P. Williams,et al.  Order of sequential magnetic phase transitions in Ni-Mn-Ga alloys as revealed by Arrott plots , 2006 .

[82]  Jiri Kulda,et al.  Emergence of soliton chirality in a quantum antiferromagnet , 2005 .

[83]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[84]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[85]  T. Prokscha,et al.  Nano-scale thin film investigations with slow polarized muons , 2004 .

[86]  G. Lonzarich,et al.  de Haas-van Alphen effect in ZrZn2 under pressure: crossover between two magnetic states. , 2004, Physical review letters.

[87]  R. Wiesendanger,et al.  Spin-polarized scanning tunneling microscopy study of 360° walls in an external magnetic field , 2003 .

[88]  T. Motohashi,et al.  Unconventional magnetic transition and transport behavior in Na0.75CoO2 , 2002, cond-mat/0212395.

[89]  P. Wyder,et al.  Electrical magnetochiral anisotropy. , 2001, Physical review letters.

[90]  U. Rößler,et al.  Chiral symmetry breaking in magnetic thin films and multilayers. , 2001, Physical review letters.

[91]  S. Blundell Spin-polarized muons in condensed matter physics , 1999, cond-mat/0207699.

[92]  C. Lacroix,et al.  Dzyaloshinsky–Moriya interactions induced by symmetry breaking at a surface , 1998 .

[93]  P. D. Réotier,et al.  REVIEW ARTICLE: Muon spin rotation and relaxation in magnetic materials , 1997, cond-mat/9710235.

[94]  A. P. Ramirez,et al.  REVIEW ARTICLE: Colossal magnetoresistance , 1997 .

[95]  Vitalij K. Pecharsky,et al.  Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from ∼20 to ∼290 K , 1997 .

[96]  K. Gschneidner,et al.  Giant Magnetocaloric Effect in Gd{sub 5}(Si{sub 2}Ge{sub 2}) , 1997 .

[97]  Masato Tomita,et al.  Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon , 1996, Nature.

[98]  Y. Kubo,et al.  Giant magnetoresistance in Ti2Mn2O7 with the pyrochlore structure , 1996, Nature.

[99]  T. Takabatake,et al.  μSR measurements of spin fluctuations in CePt2Sn2 , 1995 .

[100]  Bauer,et al.  Experimental and theoretical spin configurations in Fe/Gd multilayers. , 1994, Physical review. B, Condensed matter.

[101]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[102]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[103]  Y. Watabiki,et al.  Weyl anomaly of the product of string vertex functions , 1988 .

[104]  Kuiper,et al.  Perpendicular magnetic anisotropy of Co-Au multilayers induced by interface sharpening. , 1988, Physical review letters.

[105]  Johnson,et al.  Coupling of electronic charge and spin at a ferromagnetic-paramagnetic metal interface. , 1988, Physical review. B, Condensed matter.

[106]  Tilley,et al.  Phase transitions in magnetic superlattices. , 1988, Physical review. B, Condensed matter.

[107]  van Son PC,et al.  Boundary resistance of the ferromagnetic-nonferromagnetic metal interface. , 1987, Physical review letters.

[108]  Williams,et al.  Arrott-plot criterion for ferromagnetism in disordered systems. , 1986, Physical review. B, Condensed matter.

[109]  Johnson,et al.  Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. , 1985, Physical review letters.

[110]  K. Kikuchi,et al.  Magnetic Properties of Cr 1/3 NbS 2 , 1983 .

[111]  T. Moriya,et al.  Evidence for the helical spin structure due to antisymmetric exchange interaction in Cr13NbS2 , 1982 .

[112]  S. A. Dodds,et al.  μSR measurement of rare‐earth moment dynamics in the HoxLu1−xRh4B4 ternary alloy system , 1982 .

[113]  David R. Nelson,et al.  Theory of Two-Dimensional Melting , 1978 .

[114]  H. Miyajima,et al.  Simple analysis of torque measurement of magnetic thin films , 1976 .

[115]  L. Berger,et al.  Side-Jump Mechanism for the Hall Effect of Ferromagnets , 1970 .

[116]  P. Grundy,et al.  Lorentz electron microscopy , 1968 .

[117]  B. Banerjee On a generalised approach to first and second order magnetic transitions , 1964 .

[118]  Y. Ishikawa Superparamagnetism in Magnetically Dilute Systems , 1964 .

[119]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[120]  A. Yoshimori A New Type of Antiferromagnetic Structure in the Rutile Type Crystal , 1959 .

[121]  J. M. Luttinger Theory of the Hall Effect in Ferromagnetic Substances , 1958 .

[122]  A. Arrott Criterion for Ferromagnetism from Observations of Magnetic Isotherms , 1957 .

[123]  Israel S. Jacobs,et al.  Magnetic Granulometry and Super‐Paramagnetism , 1956 .

[124]  J. Smart The neel theory of ferrimagnetism , 1955 .

[125]  C. Kittel On the Gyromagnetic Ratio and Spectroscopic Splitting Factor of Ferromagnetic Substances , 1949 .

[126]  S. J. Barnett New Researches in Gyromagnetism , 1944 .

[127]  C. Gorter,et al.  On the theory of the gyromagnetic effects , 1940 .

[128]  J. Kishine,et al.  Theory of Monoaxial Chiral Helimagnet , 2015 .

[129]  Alexander C. Bornstein Anisotropy in the Helimagnet Cr1/3NbS2 , 2014 .

[130]  A. Shastri,et al.  Proton NMR and {mu}SR in Mn{sub 12}O{sub 12} acetate: A mesoscopic magnetic molecular cluster , 1998 .

[131]  P. Bruno,et al.  Magnetization and Curie Temperature of Ferromagnetic Ultrathin Films: The Influence of Magnetic Anisotropy and Dipolar Interactions (invited) , 1991 .

[132]  P. Bruno,et al.  Tight-binding approach to the orbital magnetic moment and magnetocrystalline anisotropy of transition-metal monolayers. , 1989, Physical review. B, Condensed matter.

[133]  R. Friend,et al.  3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties , 1980 .

[134]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[135]  J. V. Vleck On the Theory of Antiferromagnetism , 1941 .